Формирование ответа.
Нахождение суммы функционального ряда
Определение области сходимости функционального ряда.
Нахождение суммы функционального ряда с учетом его области сходимости (использование формул суммы геометрической прогрессии).
После подведения итогов оговаривается домашнее задание.
Домашнее задание: практическое занятие №12 из.
Ниже приведены решенные номера домашнего задания:
Пример №10 (№47из ).
Исследовать сходимость функционального ряда
в точках и
.
Решение
Если , то ряд примет вид:
- числовой положительный ряд.
Исследуем полученный числовой ряд на сходимость, применив признак Даламбера сходимости числового ряда:
Так как , то полученный числовой ряд расходится. Значит, функциональный ряд в точке
расходится.
Если , то получится числовой положительный ряд вида:
. Исследуем полученный числовой ряд на сходимость, применив признак Даламбера сходимости числового ряда:
Так как , то полученный числовой ряд сходится абсолютно. Значит, исследуемый функциональный ряд в точке
сходится абсолютно.
Ответ: заданный функциональный ряд сходится абсолютно в точке и расходится при
Пример №11 (№30 из).
Найти область сходимости ряда
.
Решение
По признаку Даламбера абсолютной сходимости функционального ря-да можно записать:
,
Если , т.е.
, то заданный функциональный ряд
сходится абсолютно на интервале
.
Если , т.е.
, то ряд
расходится в соответствии с признаком Даламбера абсолютной сходимости функционального ряда.
При функциональный ряд становится числовым знакочередующимся рядом вида 1-1+1-…. Он расходится, так как не удовлетворяет ни одному условию признака Лейбница: а)
; б)
. Значит, функциональный ряд
в точке
расходится.
При функциональный ряд становится числовым положительным рядом вида 1+1+1+…. Он расходится, так как не выполняется необходимое условие сходимости числового ряда, т.е.
. Значит, функциональный ряд
в точке
расходится.
Образование, педагогика, воспитание:
Значение речи для развития познавательных процессов, эмоционального и
социального развития детей с нарушениями слуха
Проблемы, связанные с определением значения речи для развития мышления и рассмотрением взаимодействия речи и мышления, подвергались обсуждению уже в античной философии. В соответствии с монистической моделью Платона, влияние которой сказывается до настоящего времени в различных направлениях бихевио ...
Методика чтения сказок в коррекционной школе
Сказка — наиболее любимый для всех детей жанр. Занимательность сюжета, последовательность его развития, четкость и определенность характеров персонажей, постоянные повторы слов и выражений облегчают понимание содержания сказки даже учащимися специальной школы. В сказке заложена огромная воспитатель ...
Дидактические материалы и методика их использования
Дидактические материалы подразделяются на: а) фабричные (самостоятельные и контрольные работы по 4-6 вариантам); б) самодельные: карточки для индивидуальной работы (для сильных и слабых учеников), карточки для фронтальной работы, карточки для устного счёта. Назначение “Дидактических материалов”: по ...