Формирование ответа.
Нахождение суммы функционального ряда
Определение области сходимости функционального ряда.
Нахождение суммы функционального ряда с учетом его области сходимости (использование формул суммы геометрической прогрессии).
После подведения итогов оговаривается домашнее задание.
Домашнее задание: практическое занятие №12 из.
Ниже приведены решенные номера домашнего задания:
Пример №10 (№47из ).
Исследовать сходимость функционального ряда
в точках и .
Решение
Если , то ряд примет вид: - числовой положительный ряд.
Исследуем полученный числовой ряд на сходимость, применив признак Даламбера сходимости числового ряда:
Так как , то полученный числовой ряд расходится. Значит, функциональный ряд в точке расходится.
Если , то получится числовой положительный ряд вида: . Исследуем полученный числовой ряд на сходимость, применив признак Даламбера сходимости числового ряда:
Так как , то полученный числовой ряд сходится абсолютно. Значит, исследуемый функциональный ряд в точке сходится абсолютно.
Ответ: заданный функциональный ряд сходится абсолютно в точке и расходится при
Пример №11 (№30 из).
Найти область сходимости ряда
.
Решение
По признаку Даламбера абсолютной сходимости функционального ря-да можно записать:
,
Если , т.е. , то заданный функциональный ряд сходится абсолютно на интервале .
Если , т.е. , то ряд расходится в соответствии с признаком Даламбера абсолютной сходимости функционального ряда.
При функциональный ряд становится числовым знакочередующимся рядом вида 1-1+1-…. Он расходится, так как не удовлетворяет ни одному условию признака Лейбница: а) ; б) . Значит, функциональный ряд в точке расходится.
При функциональный ряд становится числовым положительным рядом вида 1+1+1+…. Он расходится, так как не выполняется необходимое условие сходимости числового ряда, т.е. . Значит, функциональный ряд в точке расходится.
Образование, педагогика, воспитание:
Цели образования и структурные элементы содержания общего образования
В Концепции модернизации российского образования до 2020 года, исходя из роли образования в развитии российского общества, тенденции мирового развития, определяются, новые социальные требования к системе образования в России. Развивающемуся российскому обществу нужны современно образованные, нравст ...
Коммуникативно-прагматические составляющие межкультурной компетенции
К числу значимых тенденций, особенно характерных для современной эпохи, относится тенденция к глобализации. Для большинства людей глобальность – не состояние, а потенциал. В начале XXI в. человечество существует не в мировом обществе без границ, но во множестве параллельных, пересекающихся реальнос ...
Специфика и средства полового воспитания мальчиков и девочек дошкольного
возраста
Проблема полового воспитания включает в себя вопросы формирования психического пола ребенка, психических половых различий и полоролевой дифференциации. Без ее решения невозможно разработать методы дифференцированного подхода к воспитанию детей разного пола, для формирования у них основ таких качест ...