Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 7

Ответ: - область сходимости заданного функционального ряда.

Пример №6 (№18 из , студент самостоятельно у доски).

Найти область сходимости функционального ряда:

Решение

По признаку Даламбера абсолютной сходимости функционального ряда можно записать:

.

Если , т.е. , то заданный функциональный ряд сходится абсолютно на интервале .

Если , т.е. , то ряд расходится.

Исследуем заданный функциональный ряд на сходимость в точках х=1 и х= - 1.

При получается числовой положительный ряд . Он является расходящимся, так как не выполняется необходимое условие сходимости числового ряда, т.е. . Значит, заданный функциональный ряд в точке расходится.

При получается числовой знакочередующийся ряд вида . Он является расходящимся, так как не удовлетворяет условиям признака Лейбница: а) ; б) .

Ряд составленный из абсолютных величин элементов ряда имеет вид и является расходящимся.

Значит, исходный функциональный ряд расходится и в точке .

Поэтому, область сходимости заданного функционального ряда интервал - .

Ответ: .

Пример №7 (№28 из [8], студент самостоятельно у доски).

Найти область сходимости функционального ряда:

.

Решение. Определим и заданного ряда:

, .

По признаку Даламбера абсолютной сходимости функционального ряда имеем:

=

Если , т.е. , то в соответствии с признаком Даламбера абсолютной сходимости функционального ряда, исследуемый функциональный ряд сходится абсолютно на интервале .

Если , т.е. , то функциональный ряд расходится.

Исследуем заданный ряд в точках и .

Страницы: 2 3 4 5 6 7 8 9 10 11 12

Образование, педагогика, воспитание:

Результаты пробного экспериментального обучения по формированию межкультурной компетенции у учащихся
Несмотря на то, что формирование межкультурной компетенции очень сложный и длительный процесс, требующий продолжительной работы, мы сделали попытку провести пробное экспериментальное обучение и выявить уровни сформированности межкультурной компетенции у старшеклассников. В исследовании принимали уч ...

История развития акварельной живописи
Акварель – одна из самых сложных и загадочных техник. Секрет ее, на первый взгляд, достаточно прост: растворенные в воде очень мелко растертые частицы пигмента создают прозрачный красочный слой, проницаемый для световых лучей, которые, отражаясь от белой поверхности бумаги, повышает интенсивность з ...

Теоретические основы преподавания живописи пейзажа акварелью
Для преподавания живописи пейзажа акварелью на уроках изобразительного искусства необходимо для начала ознакомить учащихся с различными видами пейзажей, картинами художников и разными акварельными техниками. Необходимо начать с выполнения простых упражнений, небольших этюдов пейзажа, а также деталь ...

Навигация по сайту

© 2022 Copyright www.ecsir.ru