Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 7

Ответ: - область сходимости заданного функционального ряда.

Пример №6 (№18 из , студент самостоятельно у доски).

Найти область сходимости функционального ряда:

Решение

По признаку Даламбера абсолютной сходимости функционального ряда можно записать:

.

Если , т.е. , то заданный функциональный ряд сходится абсолютно на интервале .

Если , т.е. , то ряд расходится.

Исследуем заданный функциональный ряд на сходимость в точках х=1 и х= - 1.

При получается числовой положительный ряд . Он является расходящимся, так как не выполняется необходимое условие сходимости числового ряда, т.е. . Значит, заданный функциональный ряд в точке расходится.

При получается числовой знакочередующийся ряд вида . Он является расходящимся, так как не удовлетворяет условиям признака Лейбница: а) ; б) .

Ряд составленный из абсолютных величин элементов ряда имеет вид и является расходящимся.

Значит, исходный функциональный ряд расходится и в точке .

Поэтому, область сходимости заданного функционального ряда интервал - .

Ответ: .

Пример №7 (№28 из [8], студент самостоятельно у доски).

Найти область сходимости функционального ряда:

.

Решение. Определим и заданного ряда:

, .

По признаку Даламбера абсолютной сходимости функционального ряда имеем:

=

Если , т.е. , то в соответствии с признаком Даламбера абсолютной сходимости функционального ряда, исследуемый функциональный ряд сходится абсолютно на интервале .

Если , т.е. , то функциональный ряд расходится.

Исследуем заданный ряд в точках и .

Страницы: 2 3 4 5 6 7 8 9 10 11 12

Образование, педагогика, воспитание:

Роль географических представлений в воспитании дошкольника
Слово "география" по-гречески означает "записи о Земле". Это наука о людях и различных местах на Земле, а также об отношениях между людьми и самой Землей. Земля и ее обитатели постоянно изменяются, поэтому география рассказывает и о том, как происходят эти изменения. Географию м ...

Понятие педагогической технологии
В педагогической и психологической литературе часто встречается понятие "технология", пришедшее к нам вместе с развитием компьютерной техники и внедрением новых компьютерных технологий. В педагогической науке появилось специальное направление - педагогическая технология. Это направление з ...

Апробация экспериментальной модели влияния личностно-ориентированного подхода на эффективность процесса обучения
Поскольку в определении личностно-ориентированного обучения подчеркивается необходимости учета особенностей его субъектов, то для педагога становится актуальной проблема дифференциации детей. На наш взгляд, дифференциация необходима по следующим причинам: - разные стартовые возможности детей; - раз ...

Навигация по сайту

© 2024 Copyright www.ecsir.ru