Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 7

Ответ: - область сходимости заданного функционального ряда.

Пример №6 (№18 из , студент самостоятельно у доски).

Найти область сходимости функционального ряда:

Решение

По признаку Даламбера абсолютной сходимости функционального ряда можно записать:

.

Если , т.е. , то заданный функциональный ряд сходится абсолютно на интервале .

Если , т.е. , то ряд расходится.

Исследуем заданный функциональный ряд на сходимость в точках х=1 и х= - 1.

При получается числовой положительный ряд . Он является расходящимся, так как не выполняется необходимое условие сходимости числового ряда, т.е. . Значит, заданный функциональный ряд в точке расходится.

При получается числовой знакочередующийся ряд вида . Он является расходящимся, так как не удовлетворяет условиям признака Лейбница: а) ; б) .

Ряд составленный из абсолютных величин элементов ряда имеет вид и является расходящимся.

Значит, исходный функциональный ряд расходится и в точке .

Поэтому, область сходимости заданного функционального ряда интервал - .

Ответ: .

Пример №7 (№28 из [8], студент самостоятельно у доски).

Найти область сходимости функционального ряда:

.

Решение. Определим и заданного ряда:

, .

По признаку Даламбера абсолютной сходимости функционального ряда имеем:

=

Если , т.е. , то в соответствии с признаком Даламбера абсолютной сходимости функционального ряда, исследуемый функциональный ряд сходится абсолютно на интервале .

Если , т.е. , то функциональный ряд расходится.

Исследуем заданный ряд в точках и .

Страницы: 2 3 4 5 6 7 8 9 10 11 12

Образование, педагогика, воспитание:

Понятие мышления
В процессе ощущения и восприятия человек познает окружающий мир в результате непосредственного, чувственного его отражения. Однако внутренние закономерности, сущность вещей не могут отразиться в нашем сознании непосредственно. Ни одна закономерность не может быть воспринята непосредственно органами ...

Образование в США
Считается, что США – наилучший вариант для магистратуры и докторантуры. Многие американские университеты играют первую роль в исследовательских проектах, имеющих международное значение. Их уровень определяется отличной лабораторно-технической базой, легким доступом колледж всем мыслимым источникам ...

Современные подходы к организации наглядного метода обучения
Проблема использования наглядности на уроках истории является «вечной». Всплеск интереса к этой теме в методической литературе и создание комплектов наглядных пособий для школы пришлись на вторую половину XX века (Н.И. Аппарович, Г.И. Годер, П.В. Гора, Г.М. Донской, Ф.П. Коровкин, Д.Н. Никифоров и ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru