Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 3

Вопрос 1: Сформулировать определение функциональной последовательности.

Ответ: Определение №1. Пусть дана последовательность функций . Причем функции являются функциями одной переменной и определены в некоторой области . Такая последовательность называется функциональной и обозначается .

Вопрос 2: Определить, что называют предельной функцией последовательности ?

Ответ: Определение №2. Функция называется предельной функцией последовательности , если выполняется утверждение .

Вопрос 3: Дать понятия функционального ряда и его области сходимости.

Ответ: Определение №3. Ряд, элементами которого являются функции одной и той же переменной , заданной в области:

называется функциональным рядом.

Определение №4. Совокупность всех значений переменной , при которых функции определены и ряд сходится, называют областью сходимости функционального ряда.

Областью сходимости функционального ряда чаще всего служит какой-нибудь промежуток оси .

Вопрос 4: Что называют суммой функционального ряда?

Ответ: Пусть дан функциональный ряд и он сходится при каждом фиксированном из, тогда сумму такого ряда представляет собой некоторую функцию переменной : . Сумма для функционального ряда определяется также как и для числового: . Здесь - частичная сумма функционального ряда n-го порядка

.

Преподаватель: Итак, а теперь приступим непосредственно к выполнению упражнений.

При объяснении нового материала, на экран телевизора выводится задание с подробным решением, преподаватель комментирует решение, студенты записывают в тетради. При объяснении материала следует обратиться к технологической карте по теме "Функциональные последовательности и ряды", в которой отмечены затруднения при изучении данной темы, а также типичные ошибки, допускаемые студентами.

Практические задания должны рассматриваться по принципу "от простого к сложному". Вначале необходимо выполнить упражнения на исследование сходимости функционального ряда в точке. Такого вида упражнения помогают студентам обнаружить взаимосвязь числового и функционального рядов, а также лучше понять "природу" функционального ряда.

Дан функциональный ряд:

,

Страницы: 1 2 3 4 5 6 7 8

Образование, педагогика, воспитание:

Критерий Коши равномерной сходимости функционального ряда
Теорема 2. Для того чтобы функциональный ряд равномерно сходился на множестве X, необходимо и достаточно, чтобы 0, N, , , N и выполнялось неравенство: . Доказательство 1) Составим разность частичных сумм функционального ряда : . 2) Если будут выполняться неравенства: , то это означает, что последов ...

Технология педагогических мастерских
Существующая система образования в значительной степени построена на передаче знаний от учителя к ученику, на пассивной позиции обучающегося, что не позволяет личности самой строить свое знание, активно и творчески пользоваться им в жизни как свои приобретением. Этот подход к образованию не раскрыв ...

Методическое осмысление вопроса формирования и развития грамматического строя речи школьников
В свою очередь исследователь-методист Е.Е.Вишневская выделяет три типа уроков формирования грамматического строя речи: уроки знакомства с новым материалом (с новым видом грамматического обобщения) уроки закрепления практических грамматических умений уроки повторения и контроля усвоения грамматическ ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru