Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 5

Найдем общий элемент заданного функционального ряда:

Исследуемый функциональный ряд представляет собой сумму убывающей геометрической прогрессии при , т.е. при , где , .

Значит, область сходимости исходного функционального ряда: .

Проверим сходимость исходного функционального ряда при и .

Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Итак, область абсолютной сходимости исходного функционального ряда - .

II способ.

Определим и заданного ряда: , .

По признаку Даламбера абсолютной сходимости функционального ряда можно записать:

.

Если , т.е. , то заданный функциональный ряд сходится абсолютно.

Исследуем на сходимость исходный функциональный ряд при и .

Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.

Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Ответ: область абсолютной сходимости исходного функционального ряда - .

Пример №4 (№339 из, с комментариями преподавателя).

Найти область сходимости функционального ряда:

.

Решение

Найдем общий элемент заданного функционального ряда . Если , то ; Так как , то ряд расходится.

Страницы: 1 2 3 4 5 6 7 8 9 10

Образование, педагогика, воспитание:

Специфика организации проектной деятельности учащихся
Метод проектов зародился во второй половине XIX века в сельскохозяйственных школах США и основывался на теоретических концепциях прагматической педагогики, основоположником которой был американский философ-идеалист Джон Дьюи. Метод был направлен на то, чтобы найти способы, пути развития самостоятел ...

Психолого-лингвистические и дидактико-методические основы обучения чтению как виду речевой деятельности
В психологической литературе речевая деятельность определяется как "реализация общественно-коммуникативной деятельности людей в процессе их вербального общения". Способами её реализации, или видами речевой деятельности, являются говорение, слушание, чтение и письмо. Как справедливо отмеча ...

Методикаформирования представлений о домашних животных у детей раннего возрастасредствами дидактической игры
Провели диагностику предложенную Е.В. Гончаровой и Л.В. Моисеевой. В процессе индивидуальных бесед малышам демонстрировались дидактические картинки игрушки-модели. Анализируя уровень знаний детей о животных, обращали внимание на следующие критерии: 1. Узнавание и называние животного. 2. Знание особ ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru