Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 5

Найдем общий элемент заданного функционального ряда:

Исследуемый функциональный ряд представляет собой сумму убывающей геометрической прогрессии при , т.е. при , где , .

Значит, область сходимости исходного функционального ряда: .

Проверим сходимость исходного функционального ряда при и .

Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Итак, область абсолютной сходимости исходного функционального ряда - .

II способ.

Определим и заданного ряда: , .

По признаку Даламбера абсолютной сходимости функционального ряда можно записать:

.

Если , т.е. , то заданный функциональный ряд сходится абсолютно.

Исследуем на сходимость исходный функциональный ряд при и .

Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.

Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Ответ: область абсолютной сходимости исходного функционального ряда - .

Пример №4 (№339 из, с комментариями преподавателя).

Найти область сходимости функционального ряда:

.

Решение

Найдем общий элемент заданного функционального ряда . Если , то ; Так как , то ряд расходится.

Страницы: 1 2 3 4 5 6 7 8 9 10

Образование, педагогика, воспитание:

Условия эффективного воспитания детей в национальных традициях
В последнее время воспитание малыша принято рассматривать с точки зрения формирования ценностного отношения к окружающей действительности. Н. Непомнящая к базовым ценностям относит реально-бытовые ценности, ценность игры, ценность отношения к другим, ценность познания и ценность деятельности в широ ...

Характеристика быстроты как двигательного качества
Хоккей является средством развития быстроты. Быстрота — способность человека совершать те или иные действия, физические упражнения в минимальный для данных условий отрезок времени. Быстрота — способность человека выполнять движения в наикратчайшее время. Высокая пластичность и большая подвижность н ...

Сущность педагогического общения
Педагогическое общение — это особый вид общения, оно является «категорией профессиональной». Оно всегда обучающее, развивающее и воспитывающее. Общение ориентировано на развитие личности общающихся сторон, их взаимоотношений. Педагогическое общение — процесс динамичный: с возрастом воспитанников из ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru