Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 5

Найдем общий элемент заданного функционального ряда:

Исследуемый функциональный ряд представляет собой сумму убывающей геометрической прогрессии при , т.е. при , где , .

Значит, область сходимости исходного функционального ряда: .

Проверим сходимость исходного функционального ряда при и .

Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Итак, область абсолютной сходимости исходного функционального ряда - .

II способ.

Определим и заданного ряда: , .

По признаку Даламбера абсолютной сходимости функционального ряда можно записать:

.

Если , т.е. , то заданный функциональный ряд сходится абсолютно.

Исследуем на сходимость исходный функциональный ряд при и .

Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.

Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Ответ: область абсолютной сходимости исходного функционального ряда - .

Пример №4 (№339 из, с комментариями преподавателя).

Найти область сходимости функционального ряда:

.

Решение

Найдем общий элемент заданного функционального ряда . Если , то ; Так как , то ряд расходится.

Страницы: 1 2 3 4 5 6 7 8 9 10

Образование, педагогика, воспитание:

Параметры, позволяющие диагностировать развитие креативности в процессе музыкального школьного образования
Креативность является научно установившейся категорией в психологической науке. Основная задача психологии творчества состоит в раскрытии психических закономерностей и механизмов творческого процесса и креативности (творческости). Творчество рассматривается как основа и механизм развития психики. ( ...

Особенности работы на пленере
Любая картина начинается с идеи, с замысла. Художник наблюдает разные состояния природы, делает зарисовки и этюды на пленере. Важность работы на пленере невозможно переоценить. Этюды и рисунки с натуры были обязательной частью подготовки художников прошлых веков. Е.И Репин и Ф.А. Васильев видели в ...

Формирование знаний на уроке окружающего мира с использованием презентации на тему: «Животный и растительный мир болот»
По программе «Начальная школа XIX век» встречается тема «Животный и растительный мир болот». Целью урока: расширить представления учащихся о животном и растительном мире водоемов: болот. Развивающая: развивать ОУУН: учебно–управленческие умения: организовывать свой труд, контроль и анализ собственн ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru