Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 5

Найдем общий элемент заданного функционального ряда:

Исследуемый функциональный ряд представляет собой сумму убывающей геометрической прогрессии при , т.е. при , где , .

Значит, область сходимости исходного функционального ряда: .

Проверим сходимость исходного функционального ряда при и .

Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Итак, область абсолютной сходимости исходного функционального ряда - .

II способ.

Определим и заданного ряда: , .

По признаку Даламбера абсолютной сходимости функционального ряда можно записать:

.

Если , т.е. , то заданный функциональный ряд сходится абсолютно.

Исследуем на сходимость исходный функциональный ряд при и .

Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.

Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Ответ: область абсолютной сходимости исходного функционального ряда - .

Пример №4 (№339 из, с комментариями преподавателя).

Найти область сходимости функционального ряда:

.

Решение

Найдем общий элемент заданного функционального ряда . Если , то ; Так как , то ряд расходится.

Страницы: 1 2 3 4 5 6 7 8 9 10

Образование, педагогика, воспитание:

Повышение компетентности педагогов в области интегрированного обучения детей с особыми образовательными потребностями в массовой школе
В Концепции модернизации российского образования на период до 2010 г. отмечается: «дети с ограниченными возможностями здоровья должны обеспечиваться медико-социальным сопровождением и специальными условиями для обучения в общеобразовательном ДОУ и школе по месту жительства». По статистическим данны ...

Содержание географических представлений
Взаимодействие человека с природой не может остаться в стороне от познания ребенком окружающего мира. Конкретные примеры использования человеком природных ресурсов, последствия этого воздействия на природу и на здоровье людей могут быть взяты на вооружение дошкольной педагогикой с целью формировани ...

Игровые технологии в младшем школьном возрасте
Игровые технологии применяются на уроках как в начальной школе, так и в среднем и старшем звене. Но в нашей работе мы рассмотрим подробно игровые технологии в младшем школьном возрасте. Для младшего школьного возраста характерны яркость и непосредственность восприятия, легкость вхождения в образы. ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru