Итак, сумма функционального ряда при
равна
.
Ответ: При
.
Пример №9 (№16 из [10], студент у доски с помощью преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
В соответствии с признаком Даламбера, если
, т.е.
или
, то заданный функциональный ряд сходится абсолютно.
Если
, т.е.
, исследуемый функциональный ряд расходится.
При
получается числовой положительный ряд
. Он расходится, так как не выполняется необходимое условие сходимости числового ряда, т.е.
. Следовательно, исследуемый функциональный ряд в точке
расходится.
При
получается числовой знакочередующийся ряд вида
. Он расходится, так как не удовлетворяет условиям признака Лейбница: а)
; б)
. Значит, в точке
функциональный ряд
расходится.
Следовательно, областью сходимости заданного функционального ряда является интервал
.
Найдем сумму заданного функционального ряда на его области сходимости. Если
, то ряд представляет собой сумму убывающей геометрической прогрессии с
. Сумма ряда
на интервале
будет определяться по формуле
Ответ: При
.
В конце занятия подводятся итоги. Преподавателю целесообразно предложить студентам описать алгоритмы выполнения заданий каждого рассмотренного типа, особенности заданий каждого типа, их взаимосвязь. Ниже приведены алгоритмы выполнения рассмотренных заданий.
Исследование ряда на сходимость в точке
Вместо переменной в функциональный ряд подставляется ее значение.
Исследуется полученный числовой ряд на сходимость с помощью признаков сходимости числовых рядов.
Формулируется вывод о сходимости исследуемого функционального ряда в заданной точке.
Определение области сходимости функционального ряда
Определение интервала сходимости функционального ряда (ряд исследуется на всей числовой прямой).
Исследование ряда на сходимость на концах интервала сходимости (сходимость функционального ряда в точке).
Образование, педагогика, воспитание:
Игры и упражнения с предметами
В воспитании детей раннего возраста очень важным является обогащение и совершенствование чувственного опыта в процессе деятельности. Характерной для этой возрастной ступени деятельностью является деятельность предметная. Ее называют ведущей не только потому, что она преобладает, но и потому, что им ...
Познавательное развитие детей в ДОУ
Накопленные к шести годам сведения о большом мире является серьезной базой для дальнейшего развития познавательной сферы ребенка. Эта база данных о большом мире требует от него определенных умений и упорядочивания накопленных и поступающих сведений. Процесс знаний направлен на: - содержательное упо ...
Сравнительный анализ программ учебно-воспитательного процесса в дошкольных
образовательных учреждениях
Разработанная в России стратегия построения государственных образовательных стандартов соответствует Международной конвенции о правах ребенка, опирается на положение Закона РФ "Об образовании". В отличие от школьных государственных образовательных стандартов, которые определяют: обязатель ...