Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 9

Итак, сумма функционального ряда при равна .

Ответ: При .

Пример №9 (№16 из [10], студент у доски с помощью преподавателя).

Найти сумму ряда:

.

Решение

По признаку Даламбера абсолютной сходимости функционального ряда можем записать:

.

В соответствии с признаком Даламбера, если , т.е. или , то заданный функциональный ряд сходится абсолютно.

Если , т.е. , исследуемый функциональный ряд расходится.

При получается числовой положительный ряд . Он расходится, так как не выполняется необходимое условие сходимости числового ряда, т.е. . Следовательно, исследуемый функциональный ряд в точке расходится.

При получается числовой знакочередующийся ряд вида . Он расходится, так как не удовлетворяет условиям признака Лейбница: а) ; б) . Значит, в точке функциональный ряд расходится.

Следовательно, областью сходимости заданного функционального ряда является интервал .

Найдем сумму заданного функционального ряда на его области сходимости. Если , то ряд представляет собой сумму убывающей геометрической прогрессии с . Сумма ряда на интервале будет определяться по формуле

Ответ: При .

В конце занятия подводятся итоги. Преподавателю целесообразно предложить студентам описать алгоритмы выполнения заданий каждого рассмотренного типа, особенности заданий каждого типа, их взаимосвязь. Ниже приведены алгоритмы выполнения рассмотренных заданий.

Исследование ряда на сходимость в точке

Вместо переменной в функциональный ряд подставляется ее значение.

Исследуется полученный числовой ряд на сходимость с помощью признаков сходимости числовых рядов.

Формулируется вывод о сходимости исследуемого функционального ряда в заданной точке.

Определение области сходимости функционального ряда

Определение интервала сходимости функционального ряда (ряд исследуется на всей числовой прямой).

Исследование ряда на сходимость на концах интервала сходимости (сходимость функционального ряда в точке).

Страницы: 4 5 6 7 8 9 10 11 12 13 14

Образование, педагогика, воспитание:

Методические рекомендации для воспитателей по формированию культурно-гигиенических навыков у детей младшего дошкольного возраста
Проведя наше исследование, мы считаем, что в каждом детском саду должны проводиться специальные занятия или мероприятия, направленные на формирование культурно - гигиенических навыков у детей младшего дошкольного возраста. Заложенные в детстве навыки и привычки сохраняются у дошкольников на всю ост ...

Игры, развивающие силу голоса и темп речи
Воспитания звуковой культуры речи у ребенка данного возраста направлено на развитие у него слухового восприятия, усвоение и закрепление правильного звукопроизношения. Голосовой аппарат малыша еще недостаточно окреп. Ребенок не всегда может правильно им пользоваться, часто говорит тихо, шепотом или ...

Задачи и содержание словарной работы
Методика словарной работы в начальной школе предусматривает следующие направления: 1) обогащение словаря, т. е. усвоение новых, ранее неизвестных учащимся слов. Причем установлено, что ежедневно учащийся должен прибавлять к своему словарю на уроках родного языка 4— 6 слов; 2) уточнение словаря, т. ...

Навигация по сайту

© 2022 Copyright www.ecsir.ru