Итак, сумма функционального ряда при равна
.
Ответ: При
.
Пример №9 (№16 из [10], студент у доски с помощью преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
В соответствии с признаком Даламбера, если , т.е.
или
, то заданный функциональный ряд сходится абсолютно.
Если , т.е.
, исследуемый функциональный ряд расходится.
При получается числовой положительный ряд
. Он расходится, так как не выполняется необходимое условие сходимости числового ряда, т.е.
. Следовательно, исследуемый функциональный ряд в точке
расходится.
При получается числовой знакочередующийся ряд вида
. Он расходится, так как не удовлетворяет условиям признака Лейбница: а)
; б)
. Значит, в точке
функциональный ряд
расходится.
Следовательно, областью сходимости заданного функционального ряда является интервал .
Найдем сумму заданного функционального ряда на его области сходимости. Если , то ряд представляет собой сумму убывающей геометрической прогрессии с
. Сумма ряда
на интервале
будет определяться по формуле
Ответ: При
.
В конце занятия подводятся итоги. Преподавателю целесообразно предложить студентам описать алгоритмы выполнения заданий каждого рассмотренного типа, особенности заданий каждого типа, их взаимосвязь. Ниже приведены алгоритмы выполнения рассмотренных заданий.
Исследование ряда на сходимость в точке
Вместо переменной в функциональный ряд подставляется ее значение.
Исследуется полученный числовой ряд на сходимость с помощью признаков сходимости числовых рядов.
Формулируется вывод о сходимости исследуемого функционального ряда в заданной точке.
Определение области сходимости функционального ряда
Определение интервала сходимости функционального ряда (ряд исследуется на всей числовой прямой).
Исследование ряда на сходимость на концах интервала сходимости (сходимость функционального ряда в точке).
Образование, педагогика, воспитание:
Игры, формирующие правильное звукопроизношение
Общение ребенка со взрослыми и сверстниками наиболее успешно осуществляется тогда, когда говорящий внятно и чисто произносит слова. Нечеткое или неправильное произношение слов может быть причиной их непонимания. Неправильное произношение отдельных групп звуков в младшем дошкольном возрасте вполне з ...
Педагогика игры
Одна из главных сфер воспитания детей до школы — игра. Поэтому при разработке проблем общественного дошкольного воспитания, естественно, к ряду главных относятся воспитательные возможности игры. Учитывая эти возможности, следует рассматривать игру как форму воспитания, как средство для решения опре ...
Генезис стиля
Предпосылки существования объективированных стилей создаются в процессе развития деятельности, отчуждения ее результатов, продуктов, средств от производителя. Условным началом формирования индивидуального стиля можно считать вступление субъекта в деятельность. Сразу же, еще до сколько-нибудь полног ...