Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 14

Можно провести письменную самостоятельную работу по домашнему заданию на 15 минут. В самостоятельной работе предлагается 2 варианта, в каждом варианте по 3 задания. Например, Вариант №1: №№ 2, 11, 14; Вариант№2: №№ 3, 12, 15. Преподаватель самостоятельно определяет какие задания и в какой последовательности будут содержать каждый из вариантов. Во время проведения самостоятельной работы у доски работают студенты, которым предлагаются наиболее сложные на взгляд преподавателя примеры. Например, №№ 13,10. По завершении самостоятельной работы эти примеры проверяются аудиторией.

Преподаватель: А теперь давайте вспомним определения и формулировки теорем по теме "Равномерная сходимость функциональных последовательностей и рядов", необходимые нам сегодня для выполнения упражнений.

Проводится фронтальный опрос с целью проверки теоретических знаний по изучаемой теме. Студентам предлагается отвечать на следующие вопросы у доски, выполняя необходимые при ответе записи. К доске вызываются сразу 3-4 студента.

Вопрос 1: Какая последовательность называется равномерно сходящейся?

Ответ: Определение №1. Функциональная последовательность называется равномерно сходящейся на множестве , если существует функция , в которой она равномерно сходится на множестве . Обозначение:

[14].

Вопрос 2: Какой функциональный ряд называется равномерно сходящимся? Сформулировать определение такого ряда, используя понятие последовательности его частичных сумм.

Ответ: Определение №2. Если последовательность частичных сумм функционального ряда равномерно сходится к функции на множестве , то ряд равномерно сходится на множестве [21].

Вопрос 3: Дать определение равномерно сходящегося функционального ряда, используя понятие остатка функционального ряда.

Ответ: Определение №3. Представим сумму функционального ряда в виде: , где [-остаток функционального ряда].

Определение №4. Сходящийся функциональный ряд называется равномерно сходящимся в некоторой области , если для каждого сколь угодно малого числа найдется такое положительное число , что при выполняется неравенство для любого из области . При этом сумма равномерно сходящегося ряда в области , где (n=1,2,3…) - непрерывные функции в области , есть непрерывная функция.

Страницы: 9 10 11 12 13 14 15 16 17 18 19

Образование, педагогика, воспитание:

Роль устной речи в жизнедеятельности человека
Лингвистика рассматривает такое явление как язык в двух аспектах — язык и речь. При рассмотрении языка имеется ввиду определенная система, которая находится вне человека и осуществляется независимо от него. Говоря о речи, имеется ввиду речевая деятельность. С точки зрения психологии (А.А. Леонтьев, ...

Система образования Новой Зеландии
До 1907 года Новая Зеландия оставалась британской колонией, поэтому английское влияние чувствуется здесь во всем, даже в системе образования, построенной по британской модели. Иностранцам нравится учиться в этой стране. Каждый год сюда приезжают около 30 тыс. студентов из-за рубежа. В Новой Зеланди ...

Вариант работы с аутентичным текстом
Цель данного этапа заключается в создании ситуации и мотива общения, в формулировке коммуникативной задачи, а также в преодолении трудностей восприятия и понимания сообщения путем использования различных опор и прочих факторов, облегчающих восприятие. «Today we are going to discuss one of the most ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru