Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 14

Можно провести письменную самостоятельную работу по домашнему заданию на 15 минут. В самостоятельной работе предлагается 2 варианта, в каждом варианте по 3 задания. Например, Вариант №1: №№ 2, 11, 14; Вариант№2: №№ 3, 12, 15. Преподаватель самостоятельно определяет какие задания и в какой последовательности будут содержать каждый из вариантов. Во время проведения самостоятельной работы у доски работают студенты, которым предлагаются наиболее сложные на взгляд преподавателя примеры. Например, №№ 13,10. По завершении самостоятельной работы эти примеры проверяются аудиторией.

Преподаватель: А теперь давайте вспомним определения и формулировки теорем по теме "Равномерная сходимость функциональных последовательностей и рядов", необходимые нам сегодня для выполнения упражнений.

Проводится фронтальный опрос с целью проверки теоретических знаний по изучаемой теме. Студентам предлагается отвечать на следующие вопросы у доски, выполняя необходимые при ответе записи. К доске вызываются сразу 3-4 студента.

Вопрос 1: Какая последовательность называется равномерно сходящейся?

Ответ: Определение №1. Функциональная последовательность называется равномерно сходящейся на множестве , если существует функция , в которой она равномерно сходится на множестве . Обозначение:

[14].

Вопрос 2: Какой функциональный ряд называется равномерно сходящимся? Сформулировать определение такого ряда, используя понятие последовательности его частичных сумм.

Ответ: Определение №2. Если последовательность частичных сумм функционального ряда равномерно сходится к функции на множестве , то ряд равномерно сходится на множестве [21].

Вопрос 3: Дать определение равномерно сходящегося функционального ряда, используя понятие остатка функционального ряда.

Ответ: Определение №3. Представим сумму функционального ряда в виде: , где [-остаток функционального ряда].

Определение №4. Сходящийся функциональный ряд называется равномерно сходящимся в некоторой области , если для каждого сколь угодно малого числа найдется такое положительное число , что при выполняется неравенство для любого из области . При этом сумма равномерно сходящегося ряда в области , где (n=1,2,3…) - непрерывные функции в области , есть непрерывная функция.

Страницы: 9 10 11 12 13 14 15 16 17 18 19

Образование, педагогика, воспитание:

Правильная постановка задач на уроке
Нередко активность учащихся на уроке снижается из-за того, что учитель допускает ошибки при постановке задачи. Л.В. Вишнева выделяет наиболее типичные из них: 1. Учитель перечисляет упражнения, которые будут выполнять ученики на уроке, вместо того чтобы поставить задачу, которая должна быть решена. ...

Оптимальная загруженность учащихся на уроке
Оптимальная загруженность учащихся на уроке обеспечивается рядом организационно-педагогических мер: устранением ненужных пауз, осуществлением постоянного контроля за учащимися, максимальным включением в учебную деятельность всех без исключения учащихся и др. Устранение ненужных пауз. Часто можно на ...

Особенности социальной работы в образовательном учреждении
Проблема развития социальной педагогики в России очень актуальна. Официально профессия "социальный педагог" появилась в нашей стране лишь около десяти лет назад. Социальный педагог - призван объединять усилия семьи, школы, общественности, для оказания помощи ребенку. Социальная педагогика ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru