Можно провести письменную самостоятельную работу по домашнему заданию на 15 минут. В самостоятельной работе предлагается 2 варианта, в каждом варианте по 3 задания. Например, Вариант №1: №№ 2, 11, 14; Вариант№2: №№ 3, 12, 15. Преподаватель самостоятельно определяет какие задания и в какой последовательности будут содержать каждый из вариантов. Во время проведения самостоятельной работы у доски работают студенты, которым предлагаются наиболее сложные на взгляд преподавателя примеры. Например, №№ 13,10. По завершении самостоятельной работы эти примеры проверяются аудиторией.
Преподаватель: А теперь давайте вспомним определения и формулировки теорем по теме "Равномерная сходимость функциональных последовательностей и рядов", необходимые нам сегодня для выполнения упражнений.
Проводится фронтальный опрос с целью проверки теоретических знаний по изучаемой теме. Студентам предлагается отвечать на следующие вопросы у доски, выполняя необходимые при ответе записи. К доске вызываются сразу 3-4 студента.
Вопрос 1: Какая последовательность называется равномерно сходящейся?
Ответ: Определение №1. Функциональная последовательность называется равномерно сходящейся на множестве
, если существует функция
, в которой она равномерно сходится на множестве
. Обозначение:
[14].
Вопрос 2: Какой функциональный ряд называется равномерно сходящимся? Сформулировать определение такого ряда, используя понятие последовательности его частичных сумм.
Ответ: Определение №2. Если последовательность частичных сумм функционального ряда
равномерно сходится к функции
на множестве
, то ряд равномерно сходится на множестве
[21].
Вопрос 3: Дать определение равномерно сходящегося функционального ряда, используя понятие остатка функционального ряда.
Ответ: Определение №3. Представим сумму функционального ряда в виде: , где
[
-остаток функционального ряда].
Определение №4. Сходящийся функциональный ряд называется равномерно сходящимся в некоторой области
, если для каждого сколь угодно малого числа
найдется такое положительное число
, что при
выполняется неравенство
для любого
из области
. При этом сумма
равномерно сходящегося ряда
в области
, где
(n=1,2,3…) - непрерывные функции в области
, есть непрерывная функция.
Образование, педагогика, воспитание:
Методические рекомендации по проведению
практических занятий
Концепция целенаправленного развития у студентов готовности к самообразованию приводит к тому, что самостоятельная деятельность студентов, управляемая и организуемая, тесно смыкается с образованием, которое является составной и закономерной частью целостной ситемы учебно-воспитательной работы. В ра ...
Знакомство с деятельностью классного руководителя
Направления в работе (выясняются из беседы с классным руководителем) Работа направлена на формирование глубоких и прочных знании, коммуникативную компетентность, развитие инициативы, познавательного интереса к предмету, творческого мышления, самостоятельность обучающихся, умение планировать, прогно ...
Фонетические факторы внятности
Наряду с общими требованиями к внятности и членораздельности, следует иметь в виду и ряд вытекающих из них частных требований, касающихся разных сторон фонетического оформления речи, а именно: голоса, фонетического облика слова (включая их фонематический состав, слоговый ритм, ударение, орфоэпию), ...