Можно провести письменную самостоятельную работу по домашнему заданию на 15 минут. В самостоятельной работе предлагается 2 варианта, в каждом варианте по 3 задания. Например, Вариант №1: №№ 2, 11, 14; Вариант№2: №№ 3, 12, 15. Преподаватель самостоятельно определяет какие задания и в какой последовательности будут содержать каждый из вариантов. Во время проведения самостоятельной работы у доски работают студенты, которым предлагаются наиболее сложные на взгляд преподавателя примеры. Например, №№ 13,10. По завершении самостоятельной работы эти примеры проверяются аудиторией.
Преподаватель: А теперь давайте вспомним определения и формулировки теорем по теме "Равномерная сходимость функциональных последовательностей и рядов", необходимые нам сегодня для выполнения упражнений.
Проводится фронтальный опрос с целью проверки теоретических знаний по изучаемой теме. Студентам предлагается отвечать на следующие вопросы у доски, выполняя необходимые при ответе записи. К доске вызываются сразу 3-4 студента.
Вопрос 1: Какая последовательность называется равномерно сходящейся?
Ответ: Определение №1. Функциональная последовательность называется равномерно сходящейся на множестве
, если существует функция
, в которой она равномерно сходится на множестве
. Обозначение:
[14].
Вопрос 2: Какой функциональный ряд называется равномерно сходящимся? Сформулировать определение такого ряда, используя понятие последовательности его частичных сумм.
Ответ: Определение №2. Если последовательность частичных сумм функционального ряда
равномерно сходится к функции
на множестве
, то ряд равномерно сходится на множестве
[21].
Вопрос 3: Дать определение равномерно сходящегося функционального ряда, используя понятие остатка функционального ряда.
Ответ: Определение №3. Представим сумму функционального ряда в виде: , где
[
-остаток функционального ряда].
Определение №4. Сходящийся функциональный ряд называется равномерно сходящимся в некоторой области
, если для каждого сколь угодно малого числа
найдется такое положительное число
, что при
выполняется неравенство
для любого
из области
. При этом сумма
равномерно сходящегося ряда
в области
, где
(n=1,2,3…) - непрерывные функции в области
, есть непрерывная функция.
Образование, педагогика, воспитание:
Современные подходы к организации наглядного метода
обучения
Проблема использования наглядности на уроках истории является «вечной». Всплеск интереса к этой теме в методической литературе и создание комплектов наглядных пособий для школы пришлись на вторую половину XX века (Н.И. Аппарович, Г.И. Годер, П.В. Гора, Г.М. Донской, Ф.П. Коровкин, Д.Н. Никифоров и ...
Психолого-лингвистические основы обучения иноязычному чтению в условиях
общеобразовательных школ
Поскольку самостоятельное чтение является рецептивной речевой деятельностью, которая осуществляется на основе самостоятельного использования определённых действий рецептивного характера, рассмотрим прежде всего наиболее важные вопросы: 1) о механизмах чтения в "норме" и при несовершенном ...
Определения равномерно сходящихся функциональных последовательностей
и рядов
Опр.5. Последовательность функций равномерно сходится на множестве Х к предельной функции , если . Опр.6. Функциональная последовательность называется равномерно сходящейся на множестве X, если существует функция , в которой она равномерно сходится на множестве X. Обозначение: . Геометрический смыс ...