Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 17

Ответ: Доказана равномерная и абсолютная сходимость на интервале .

Пример №21 (№164 из [8], студент самостоятельно у доски).

Исследовать на равномерную сходимость ряд на интервале .

Решение

Если , то - условие равномерной сходимости не выполняется.

Если , то . Ряд мажорантный по отношению к ряду . По признаку Даламбера сходимости числовых рядов имеем: . Так как , то числовой ряд сходится. Значит, по теореме Вейерштрасса равномерно сходимости функциональных рядов, так как при , ряд сходится равномерно и абсолютно.

Ответ: Равномерно и абсолютно сходится при .

Преподаватель: Доказательство равномерной сходимости может быть и вспомогательной задачей, которую необходимо решить, чтобы выполнить основное задание.

Пример №22 (№94 из [10], с комментариями преподавателя).

Показать, что на луче функциональный ряд

равномерно сходится. Начиная с какого номера , остаток ряда (независимо от значения ) удовлетворяет неравенству ?.

Решение

Воспользуемся признаком Вейерштрасса.

Так как при справедливо неравенство: , то элементы заданного функционального ряда на указанном промежутке не больше соответствующих членов положительного числового ряда , т.е. при .

Числовой положительный ряд сходится, так как представляет собой сумму убывающей геометрической прогрессии с

, , .

Значит, функциональный ряд сходится равномерно и абсолютно при .

Для оценки остатка заданного функционального ряда подсчитаем остаток числового положительного (мажорантного) ряда:

, где .

Страницы: 12 13 14 15 16 17 18 19 20 21 22

Образование, педагогика, воспитание:

Психологические факторы тестовых заданий
Тестовые задания можно рассматривать как разновидность сообщений или текстов, адресованных учащимся с определенной целью. Цель этих сообщений состоит в том, чтобы проверить и оценить их знания по соответствующим разделам учебного материала. Но вначале эти сообщения должны быть правильно (адекватно) ...

Классификация технических средств обучения
Комплекс технических средств, предлагаемых для использования в процессе обучения, год от года становится всё сложнее и многообразнее. От умения педагога эффективно использовать эти средства в немалой степени зависит конечный результат восприятия учениками новой для них информации. Технические средс ...

Проблемы социализации детей в педагогике и психологии
Социальная психология понимает социализацию как процесс, обеспечивающий включение в ту или иную социальную группу или общность. Социализация представляет собой развитие человека на протяжении всей его жизни во взаимодействии с окружающей средой, в процессе которого он усваивает социальный опыт и ак ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru