Ответ: Доказана равномерная и абсолютная сходимость на интервале .
Пример №21 (№164 из [8], студент самостоятельно у доски).
Исследовать на равномерную сходимость ряд на интервале
.
Решение
Если , то
- условие равномерной сходимости не выполняется.
Если , то
. Ряд
мажорантный по отношению к ряду
. По признаку Даламбера сходимости числовых рядов имеем:
. Так как
, то числовой ряд сходится. Значит, по теореме Вейерштрасса равномерно сходимости функциональных рядов, так как
при
, ряд
сходится равномерно и абсолютно.
Ответ: Равномерно и абсолютно сходится при .
Преподаватель: Доказательство равномерной сходимости может быть и вспомогательной задачей, которую необходимо решить, чтобы выполнить основное задание.
Пример №22 (№94 из [10], с комментариями преподавателя).
Показать, что на луче функциональный ряд
равномерно сходится. Начиная с какого номера , остаток ряда
(независимо от значения
) удовлетворяет неравенству
?.
Решение
Воспользуемся признаком Вейерштрасса.
Так как при справедливо неравенство:
, то элементы заданного функционального ряда на указанном промежутке не больше соответствующих членов положительного числового ряда
, т.е.
при
.
Числовой положительный ряд сходится, так как представляет собой сумму убывающей геометрической прогрессии с
,
,
.
Значит, функциональный ряд сходится равномерно и абсолютно при
.
Для оценки остатка заданного функционального ряда подсчитаем остаток
числового положительного (мажорантного) ряда:
, где
.
Образование, педагогика, воспитание:
Содержание и экспериментальное обоснование роли семейного физического
воспитания в малокомплектной школе
На констатирующем этапе эксперимента мы провели диагностическую работу, которая состояла из двух частей: 1. Выявление потенциала семьи в формировании здорового смысла посредством традиционного семейного физического воспитания. 2. Изучение исходного уровня физической подготовленности школьников. Дан ...
Проблема сохранения здоровья подрастающего поколения
Конец XX столетия ознаменован целым комплексом глобальных изменений в социальной, экономической и духовной сферах общества, утратой ранее значимых ценностей и возникновением новых, формированием новой философии жизни. Человеческое сообщество захлестывает ускоряющийся динамизм социальных процессов, ...
Повышение компетентности педагогов в области интегрированного обучения детей с особыми образовательными потребностями в массовой школе
В Концепции модернизации российского образования на период до 2010 г. отмечается: «дети с ограниченными возможностями здоровья должны обеспечиваться медико-социальным сопровождением и специальными условиями для обучения в общеобразовательном ДОУ и школе по месту жительства». По статистическим данны ...