Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 17

Ответ: Доказана равномерная и абсолютная сходимость на интервале .

Пример №21 (№164 из [8], студент самостоятельно у доски).

Исследовать на равномерную сходимость ряд на интервале .

Решение

Если , то - условие равномерной сходимости не выполняется.

Если , то . Ряд мажорантный по отношению к ряду . По признаку Даламбера сходимости числовых рядов имеем: . Так как , то числовой ряд сходится. Значит, по теореме Вейерштрасса равномерно сходимости функциональных рядов, так как при , ряд сходится равномерно и абсолютно.

Ответ: Равномерно и абсолютно сходится при .

Преподаватель: Доказательство равномерной сходимости может быть и вспомогательной задачей, которую необходимо решить, чтобы выполнить основное задание.

Пример №22 (№94 из [10], с комментариями преподавателя).

Показать, что на луче функциональный ряд

равномерно сходится. Начиная с какого номера , остаток ряда (независимо от значения ) удовлетворяет неравенству ?.

Решение

Воспользуемся признаком Вейерштрасса.

Так как при справедливо неравенство: , то элементы заданного функционального ряда на указанном промежутке не больше соответствующих членов положительного числового ряда , т.е. при .

Числовой положительный ряд сходится, так как представляет собой сумму убывающей геометрической прогрессии с

, , .

Значит, функциональный ряд сходится равномерно и абсолютно при .

Для оценки остатка заданного функционального ряда подсчитаем остаток числового положительного (мажорантного) ряда:

, где .

Страницы: 12 13 14 15 16 17 18 19 20 21 22

Образование, педагогика, воспитание:

Анализ учебно-методических пособий для проведения элективных курсов по математике
В настоящее время литературы, связанной с элективными курсами сравнительно немного, так как данные курсы вошли в жизнь школы сравнительно недавно, и многие учителя (как показал анализ анкет) не проводят их, то есть нет опыта преподавания в данной области. Мы обратились к анализу учебных пособий по ...

Структура педагогического мастерства
Педагогическое мастерство, выражая высокий уровень развития педагогической деятельности, владения педагогической технологией, в то же время выражает и личность педагога в целом, его опыт, гражданскую и профессиональную позицию. Мастерство учителя - это синтез личностно-деловых качеств и свойств лич ...

Психолого-педагогическое обоснование использования наглядного метода обучения
Наглядность – это свойство, выражающее степень доступности и понятности психических образов объектов познания для познающего субъекта. В процессе создания образа восприятия объекта наряду с ощущением участвуют память и мышление. Образ воспринимаемого объекта является наглядным только тогда, когда ч ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru