Ответ: Доказана равномерная и абсолютная сходимость на интервале .
Пример №21 (№164 из [8], студент самостоятельно у доски).
Исследовать на равномерную сходимость ряд на интервале
.
Решение
Если , то
- условие равномерной сходимости не выполняется.
Если , то
. Ряд
мажорантный по отношению к ряду
. По признаку Даламбера сходимости числовых рядов имеем:
. Так как
, то числовой ряд сходится. Значит, по теореме Вейерштрасса равномерно сходимости функциональных рядов, так как
при
, ряд
сходится равномерно и абсолютно.
Ответ: Равномерно и абсолютно сходится при .
Преподаватель: Доказательство равномерной сходимости может быть и вспомогательной задачей, которую необходимо решить, чтобы выполнить основное задание.
Пример №22 (№94 из [10], с комментариями преподавателя).
Показать, что на луче функциональный ряд
равномерно сходится. Начиная с какого номера , остаток ряда
(независимо от значения
) удовлетворяет неравенству
?.
Решение
Воспользуемся признаком Вейерштрасса.
Так как при справедливо неравенство:
, то элементы заданного функционального ряда на указанном промежутке не больше соответствующих членов положительного числового ряда
, т.е.
при
.
Числовой положительный ряд сходится, так как представляет собой сумму убывающей геометрической прогрессии с
,
,
.
Значит, функциональный ряд сходится равномерно и абсолютно при
.
Для оценки остатка заданного функционального ряда подсчитаем остаток
числового положительного (мажорантного) ряда:
, где
.
Образование, педагогика, воспитание:
Психофизиологические особенности детей старшего дошкольного возраста с
задержкой психического развития
Рост требований к личности ребенка, среди которых ранние сроки начала обучения, усложнение образовательных программ определяют необходимость своевременного выявления пограничных состояний интеллектуальной недостаточности современных дошкольников. Задержка психического развития у детей чаще всего об ...
Здоровьесберегающие технологии в современной образовательной среде
Перед тем как рассмотреть здоровьесберегающие технологии, обратимся к понятию «здоровьесберегающее образование». Это образование, не вызывающее у субъектов образования (обучаемых и обучающих) специфических заболеваний, которые называются дидактогенией, выгоранием личности учителя, полураспадом за о ...
Игры с использованием предметных и сюжетных картинок
Уже в конце первого года ребенок тянется к красочной картинке, радуясь изображению. Малыш не сразу отличает реальный предмет от его изображения на картинке. Он относится к рисунку как к игрушке, к вещи, пытаясь взять нарисованный мячик, укусить яблоко. С помощью взрослого малыш постепенно устанавли ...