Значит, заданный ряд равномерно и абсолютно сходится при
.
Ответ: Доказана равномерная и абсолютная сходимость при .
Пример №18 (№89 из [10], c комментариями преподавателя).
С помощью признака Вейерштрасса показать, что ряд
сходится равномерно в промежутке .
Решение
Так как при
R и числовой положительный ряд
сходится, как обобщенный гармонический ряд с
, то заданный функциональный ряд сходится равномерно и абсолютно при любых значениях
.
Ответ: Доказана равномерная и абсолютная сходимость для R.
Пример №19 (№79 из [10], студент с помощью преподавателя).
Показать, что ряд сходится равномерно на отрезке
.
Решение
Если , то
. Значит, числовой положительный ряд
является мажорантным. По признаку Даламбера абсолютной сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Следовательно, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится при
равномерно и абсолютно.
Если , то ряд примет вид
- сходится. Значит, и заданный функциональный ряд сходится равномерно.
Если , то ряд примет вид
- сходится. Значит, и заданный функциональный ряд сходится равномерно.
Итак, ряд сходится равномерно и абсолютно на отрезке
.
Ответ: Доказана равномерная и абсолютная сходимость на отрезке . Пример №20 (№52 из [10], студент самостоятельно у доски).
Исследовать на равномерную сходимость ряд на всей числовой оси.
Решение
Так как при
N и
R, то в качестве мажорантного ряда выберем
- числовой положительный ряд (ряд Дирихле). Он сходится. Следовательно, и ряд
по теореме Вейерштрасса равномерно и абсолютно сходится, так как
при
R
Образование, педагогика, воспитание:
Современные компьютерные технологии как форма работы с семьей, направленная на установление партнерских, доверительных отношений
Закон РФ «Об образовании» обязывает педагогов и родителей стать не только равноправными, но и равноответственными участниками образовательного процесса. В условиях, когда большинство семей озабочено решением проблем экономического выживания усилилась тенденция самоустранения многих родителей от реш ...
Возможные формы организации профильного обучения
Возможно, что школа или сеть школ будут реализовывать не только содержание выбранного профиля, но и предоставлять учащимся возможность осваивать интересное и важное для каждого из них содержание из других профильных курсов. Такая возможность может быть реализована как посредством разнообразных форм ...
Разработка элективного курса «Элементы комбинаторики и теории вероятностей»
В соответствии с письмом Министерства образования Российской Федерации от 23.09.2003 г. №03–93 ин/13–03 «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования школы» рекомендуется во всех образовательных учреждениях начать с 2003/2004 учебного ...