Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 16

Значит, заданный ряд равномерно и абсолютно сходится при .

Ответ: Доказана равномерная и абсолютная сходимость при .

Пример №18 (№89 из [10], c комментариями преподавателя).

С помощью признака Вейерштрасса показать, что ряд

сходится равномерно в промежутке .

Решение

Так как при R и числовой положительный ряд сходится, как обобщенный гармонический ряд с , то заданный функциональный ряд сходится равномерно и абсолютно при любых значениях .

Ответ: Доказана равномерная и абсолютная сходимость для R.

Пример №19 (№79 из [10], студент с помощью преподавателя).

Показать, что ряд сходится равномерно на отрезке .

Решение

Если , то . Значит, числовой положительный ряд является мажорантным. По признаку Даламбера абсолютной сходимости числовых рядов имеем: , так как , то числовой ряд сходится абсолютно.

Следовательно, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится при равномерно и абсолютно.

Если , то ряд примет вид - сходится. Значит, и заданный функциональный ряд сходится равномерно.

Если , то ряд примет вид - сходится. Значит, и заданный функциональный ряд сходится равномерно.

Итак, ряд сходится равномерно и абсолютно на отрезке .

Ответ: Доказана равномерная и абсолютная сходимость на отрезке . Пример №20 (№52 из [10], студент самостоятельно у доски).

Исследовать на равномерную сходимость ряд на всей числовой оси.

Решение

Так как при N и R, то в качестве мажорантного ряда выберем - числовой положительный ряд (ряд Дирихле). Он сходится. Следовательно, и ряд по теореме Вейерштрасса равномерно и абсолютно сходится, так как при R

Страницы: 11 12 13 14 15 16 17 18 19 20 21

Образование, педагогика, воспитание:

Дидактическая игра как основной метод воспитания сенсорной культуры детей младшего дошкольного возраста
Могучим средством воспитания детей младшего дошкольного возраста является дидактическая игра и упражнения. Недаром этот возраст называют возрастом игры. Народная мудрость создала дидактическую игру, которая является для ребенка младшего дошкольного возраста наиболее подходящей формой обучения. Игра ...

Глобализация высшего образования в Европе: предболонский период
Первый период – 1957 – 1982 годы. Конференция министров образования в 1971 году обозначила пять основных моментов общеевропейского измерения в образовательных системах: взаимное признание дипломов; обоснование идеи формирования европейского университета; кооперация вторичного и высшего образования; ...

Содержание подготовки детей к школе
Готовность к обучению в школе предполагает необходимый уровень физического развития ребенка, позволяющий ему быстро адаптироваться к школьным нагрузкам: увеличению продолжительности уроков и их количеству, отсутствию дневного сна, иному режиму питания и т. д. Нагрузка на уроках в школе предполагает ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru