Значит, заданный ряд равномерно и абсолютно сходится при
.
Ответ: Доказана равномерная и абсолютная сходимость при .
Пример №18 (№89 из [10], c комментариями преподавателя).
С помощью признака Вейерштрасса показать, что ряд
сходится равномерно в промежутке .
Решение
Так как при
R и числовой положительный ряд
сходится, как обобщенный гармонический ряд с
, то заданный функциональный ряд сходится равномерно и абсолютно при любых значениях
.
Ответ: Доказана равномерная и абсолютная сходимость для R.
Пример №19 (№79 из [10], студент с помощью преподавателя).
Показать, что ряд сходится равномерно на отрезке
.
Решение
Если , то
. Значит, числовой положительный ряд
является мажорантным. По признаку Даламбера абсолютной сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Следовательно, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится при
равномерно и абсолютно.
Если , то ряд примет вид
- сходится. Значит, и заданный функциональный ряд сходится равномерно.
Если , то ряд примет вид
- сходится. Значит, и заданный функциональный ряд сходится равномерно.
Итак, ряд сходится равномерно и абсолютно на отрезке
.
Ответ: Доказана равномерная и абсолютная сходимость на отрезке . Пример №20 (№52 из [10], студент самостоятельно у доски).
Исследовать на равномерную сходимость ряд на всей числовой оси.
Решение
Так как при
N и
R, то в качестве мажорантного ряда выберем
- числовой положительный ряд (ряд Дирихле). Он сходится. Следовательно, и ряд
по теореме Вейерштрасса равномерно и абсолютно сходится, так как
при
R
Образование, педагогика, воспитание:
Дидактическая игра как основной метод воспитания сенсорной культуры детей младшего
дошкольного возраста
Могучим средством воспитания детей младшего дошкольного возраста является дидактическая игра и упражнения. Недаром этот возраст называют возрастом игры. Народная мудрость создала дидактическую игру, которая является для ребенка младшего дошкольного возраста наиболее подходящей формой обучения. Игра ...
Глобализация высшего образования в Европе: предболонский период
Первый период – 1957 – 1982 годы. Конференция министров образования в 1971 году обозначила пять основных моментов общеевропейского измерения в образовательных системах: взаимное признание дипломов; обоснование идеи формирования европейского университета; кооперация вторичного и высшего образования; ...
Содержание подготовки детей к школе
Готовность к обучению в школе предполагает необходимый уровень физического развития ребенка, позволяющий ему быстро адаптироваться к школьным нагрузкам: увеличению продолжительности уроков и их количеству, отсутствию дневного сна, иному режиму питания и т. д. Нагрузка на уроках в школе предполагает ...