Значит, заданный ряд
равномерно и абсолютно сходится при
.
Ответ: Доказана равномерная и абсолютная сходимость при
.
Пример №18 (№89 из [10], c комментариями преподавателя).
С помощью признака Вейерштрасса показать, что ряд
сходится равномерно в промежутке
.
Решение
Так как
при
R и числовой положительный ряд
сходится, как обобщенный гармонический ряд с
, то заданный функциональный ряд сходится равномерно и абсолютно при любых значениях
.
Ответ: Доказана равномерная и абсолютная сходимость для
R.
Пример №19 (№79 из [10], студент с помощью преподавателя).
Показать, что ряд
сходится равномерно на отрезке
.
Решение
Если
, то
. Значит, числовой положительный ряд
является мажорантным. По признаку Даламбера абсолютной сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Следовательно, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд
сходится при
равномерно и абсолютно.
Если
, то ряд примет вид
- сходится. Значит, и заданный функциональный ряд сходится равномерно.
Если
, то ряд примет вид
- сходится. Значит, и заданный функциональный ряд сходится равномерно.
Итак, ряд
сходится равномерно и абсолютно на отрезке
.
Ответ: Доказана равномерная и абсолютная сходимость на отрезке
. Пример №20 (№52 из [10], студент самостоятельно у доски).
Исследовать на равномерную сходимость ряд
на всей числовой оси.
Решение
Так как
при
N и
R, то в качестве мажорантного ряда выберем
- числовой положительный ряд (ряд Дирихле). Он сходится. Следовательно, и ряд
по теореме Вейерштрасса равномерно и абсолютно сходится, так как
при
R
Образование, педагогика, воспитание:
Понятие, функции и основные категории дидактики, дидактика высшей школы
По своему происхождению термин «дидактика» восходит к греческому языку, в котором «didaktikos» означает поучающий, а «didasko» - изучающий. Впервые ввел его в научный оборот немецкий педагог Вольфганг Ратке (1571-1635), в курсе лекций под названием «Краткий отчет из дидактики, или искусство обучени ...
Изучение особенностей развития некоторых сторон позновательной деятельности
детей с недостатками слуха дошкольного и младшего школьного возраста
Теоретические положения Л. С. Выготского о сложной структуре аномального развития ребенка, разграничении первичных и вторичных нарушений в психическом развитии способствовали нового подхода к рассмотрению особенностей позновательной деятельности детей с недостатками слуха ( Р.М.Боскис, Т.А.Власова, ...
Игровые технологии преподавания происхождения сущности государства и права
в современной школе
Игра – это определенная целостная реальность, обязательно как-то соотносящаяся с существующим миром («кусок» жизни). В этой реальности действуют и общаются люди. Соответственно, в процессе игры играющие получают опыт. Составляющими опыта могут быть и знания, и эмоциональные впечатления, и навыки, и ...