Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 21

Вопрос 2: Как звучит теорема об интегрировании функциональной последовательности? Сформулируйте условие интегрируемости функционального ряда.

Ответ: Теорема 2. Если последовательность функций , непрерывных на , сходится равномерно на указанном отрезке к функции , то для последовательность определенных интегралов с переменным верхним пределом будет сходиться равномерно на к определенному интегралу , причем будет справедлива формула:

.

Следствие. Пусть функции , N непрерывны на и функциональный ряд равномерно сходится на указанном отрезке. Тогда для функциональный ряд вида будет равномерно сходиться на отрезке к или к , т.е. функциональный ряд можно почленно интегрировать:

.

Вопрос 3: Как звучат теорема о почленном дифференцировании функциональных последовательностей и рядов?

Ответ: Теорема 4. Пусть последовательность функций , непрерывно дифференцируемых на , и последовательность их производных равномерно сходятся на указанном отрезке. Тогда предел последовательности непрерывно диффепенцируемых функций непрерывно дифференцируем на указанном отрезке и верно равенство:

или.

Следствие. Пусть функции непрерывно дифференцируемы на и функциональные ряды: равномерно сходятся на . Тогда сумма функционального ряда непрерывно дифференцируема на указанном отрезке и верно равенство:

=.

Преподаватель: Итак, а теперь приступим непосредственно к выполнению упражнений.

При объяснении нового материала, на экран телевизора выводится задание с подробным решением, преподаватель комментирует решение, студенты записывают в тетради.

При объяснении материала следует обратиться к технологической карте по теме "Функциональные последовательности и ряды" [16], в которой отмечены затруднения при изучении данной темы, а также типичные ошибки, допускаемые студентами.

Страницы: 16 17 18 19 20 21 22 23 24 25 26

Образование, педагогика, воспитание:

Организация работы по взаимодействию с родителями
Проблему воспитания, развития и формирования здорового ребенка невозможно решить в полной мере без активного участия в этом родителей. Поэтому до сведения всех специалистов ДОУ доводятся особенности содержания работы с родителями по оздоровлению, развитию и воспитанию детей в учреждении (в зависимо ...

Роль дидактической игры в развитии умственных способностей младших школьников
Младший школьный возраст называют вершиной детства. Ребенок сохраняет много детских качеств – легкомыслие, наивность, взгляд на взрослого снизу вверх. Но он уже начинает утрачивать детскую непосредственность в поведении, у него появляется другая логика мышления. Учение для него – значимая деятельно ...

Игры с пальчиками
Пальчиковые игры побуждают малышей к творчеству и в том случае, когда ребенок придумывает к текстам свои, пусть даже не очень удачные движения, его следует хвалить и, если возможно, показать свои творческие достижения, например, папе или бабушке. Наибольшее внимание ребенка привлекают пальчиковые и ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru