Вопрос 2: Как звучит теорема об интегрировании функциональной последовательности? Сформулируйте условие интегрируемости функционального ряда.
Ответ: Теорема 2. Если последовательность функций , непрерывных на
, сходится равномерно на указанном отрезке к функции
, то для
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива формула:
.
Следствие. Пусть функции ,
N непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке. Тогда для
функциональный ряд вида
будет равномерно сходиться на отрезке
к
или к
, т.е. функциональный ряд можно почленно интегрировать:
.
Вопрос 3: Как звучат теорема о почленном дифференцировании функциональных последовательностей и рядов?
Ответ: Теорема 4. Пусть последовательность функций , непрерывно дифференцируемых на
, и последовательность их производных
равномерно сходятся на указанном отрезке. Тогда предел
последовательности непрерывно диффепенцируемых функций
непрерывно дифференцируем на указанном отрезке и верно равенство:
или
.
Следствие. Пусть функции непрерывно дифференцируемы на
и функциональные ряды:
равномерно сходятся на
. Тогда сумма функционального ряда
непрерывно дифференцируема на указанном отрезке и верно равенство:
=
.
Преподаватель: Итак, а теперь приступим непосредственно к выполнению упражнений.
При объяснении нового материала, на экран телевизора выводится задание с подробным решением, преподаватель комментирует решение, студенты записывают в тетради.
При объяснении материала следует обратиться к технологической карте по теме "Функциональные последовательности и ряды" [16], в которой отмечены затруднения при изучении данной темы, а также типичные ошибки, допускаемые студентами.
Образование, педагогика, воспитание:
Роль фонематического восприятия в развитии речи
Поступление ребёнка в школу – важный этап в жизни, который меняет социальную ситуацию его развития. К обучению в 1-ом классе ребёнка необходимо готовить. Важно, чтобы дети 7-летнего возраста владели, прежде всего, грамотной фразой, развёрнутой речью, объёмом знаний, умений, навыков, определённых пр ...
Опытно-экспериментальная работа по обучению самостоятельному чтению
иноязычных художественных текстов учащихся старших классов
Разработанная нами научно-обоснованная модель обучения учащихся самостоятельному чтению художественных текстов лингвострановедческого содержания была апробирована в ходе опытно-экспериментальной работы в 10 классе школы №.28 Основная цель - проверка выдвинутой гипотезы исследования и определение ст ...
Психолого-педагогические особенности обучения математике в классах основных
профилей
При организации процесса обучения в профильных классах следует учитывать психолого-педагогические особенности учащихся того или иного профиля. Наиболее ярко эти особенности проявляются в математических и гуманитарных классах. Учащиеся математических классов отличаются характером восприятия математи ...