Вопрос 2: Как звучит теорема об интегрировании функциональной последовательности? Сформулируйте условие интегрируемости функционального ряда.
Ответ: Теорема 2. Если последовательность функций
, непрерывных на
, сходится равномерно на указанном отрезке к функции
, то для
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива формула:
.
Следствие. Пусть функции
,
N непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке. Тогда для
функциональный ряд вида
будет равномерно сходиться на отрезке
к
или к
, т.е. функциональный ряд можно почленно интегрировать:
.
Вопрос 3: Как звучат теорема о почленном дифференцировании функциональных последовательностей и рядов?
Ответ: Теорема 4. Пусть последовательность функций
, непрерывно дифференцируемых на
, и последовательность их производных
равномерно сходятся на указанном отрезке. Тогда предел
последовательности непрерывно диффепенцируемых функций
непрерывно дифференцируем на указанном отрезке и верно равенство:
или
.
Следствие. Пусть функции
непрерывно дифференцируемы на
и функциональные ряды:
равномерно сходятся на
. Тогда сумма функционального ряда
непрерывно дифференцируема на указанном отрезке и верно равенство:
=
.
Преподаватель: Итак, а теперь приступим непосредственно к выполнению упражнений.
При объяснении нового материала, на экран телевизора выводится задание с подробным решением, преподаватель комментирует решение, студенты записывают в тетради.
При объяснении материала следует обратиться к технологической карте по теме "Функциональные последовательности и ряды" [16], в которой отмечены затруднения при изучении данной темы, а также типичные ошибки, допускаемые студентами.
Образование, педагогика, воспитание:
Изучение особенностей развития некоторых сторон позновательной деятельности
детей с недостатками слуха дошкольного и младшего школьного возраста
Теоретические положения Л. С. Выготского о сложной структуре аномального развития ребенка, разграничении первичных и вторичных нарушений в психическом развитии способствовали нового подхода к рассмотрению особенностей позновательной деятельности детей с недостатками слуха ( Р.М.Боскис, Т.А.Власова, ...
Психолингвистическая основа школьного многоязычия
Слово «полилингвизм» происходит от частички poli, что значит по-латыни «много», «множество», и слова lingua – «язык». Полилингвизм определяется, как способность владеть двумя или более языками. Полилингвист – человек, который может общаться как минимум на трех языках. Различают естественный (бытово ...
Жанровая типология церковной музыки православного обряда
Главная цель литургических жанров – выразить видимыми и слышимыми средствами невидимое и неслышимое. Они указывают на ту Божественную реальность, которая присутствует в центральном христианском таинстве – Евхаристии. С помощью богослужебных жанров эта реальность является людям, а они, в свою очеред ...