Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 21

Вопрос 2: Как звучит теорема об интегрировании функциональной последовательности? Сформулируйте условие интегрируемости функционального ряда.

Ответ: Теорема 2. Если последовательность функций , непрерывных на , сходится равномерно на указанном отрезке к функции , то для последовательность определенных интегралов с переменным верхним пределом будет сходиться равномерно на к определенному интегралу , причем будет справедлива формула:

.

Следствие. Пусть функции , N непрерывны на и функциональный ряд равномерно сходится на указанном отрезке. Тогда для функциональный ряд вида будет равномерно сходиться на отрезке к или к , т.е. функциональный ряд можно почленно интегрировать:

.

Вопрос 3: Как звучат теорема о почленном дифференцировании функциональных последовательностей и рядов?

Ответ: Теорема 4. Пусть последовательность функций , непрерывно дифференцируемых на , и последовательность их производных равномерно сходятся на указанном отрезке. Тогда предел последовательности непрерывно диффепенцируемых функций непрерывно дифференцируем на указанном отрезке и верно равенство:

или.

Следствие. Пусть функции непрерывно дифференцируемы на и функциональные ряды: равномерно сходятся на . Тогда сумма функционального ряда непрерывно дифференцируема на указанном отрезке и верно равенство:

=.

Преподаватель: Итак, а теперь приступим непосредственно к выполнению упражнений.

При объяснении нового материала, на экран телевизора выводится задание с подробным решением, преподаватель комментирует решение, студенты записывают в тетради.

При объяснении материала следует обратиться к технологической карте по теме "Функциональные последовательности и ряды" [16], в которой отмечены затруднения при изучении данной темы, а также типичные ошибки, допускаемые студентами.

Страницы: 16 17 18 19 20 21 22 23 24 25 26

Образование, педагогика, воспитание:

Понятие и структура межкультурной компетенции
Глобализация – это процесс возрастающего воздействия различных факторов международного значения (например, тесных экономических и политических связей, культурного и информационного обмена) на социальную действительность в отдельных странах. Суть глобализации заключается в расширении взаимосвязей и ...

Методика применения дидактических игр на уроках математики в первом классе
Для младшего школьного возраста учение – новое и непривычное дело. Поэтому при знакомстве со школьной жизнью игра способствует снятию барьера между «внешним миром знания» и психикой ребёнка. Игровое действие позволяет осваивать то, что заранее вызывает у младшего школьника страх неизвестности, пост ...

История «личностной компоненты» образования в отечественной педагогике
В конце XIX –начале XX веков в России получили определенное распространение идеи свободного воспитания – «первого варианта» индивидуально-ориентированной педагогики. У истоков российского варианта школы свободного воспитания стоял Л.Н. Толстой. Именно ему принадлежит разработка теоретических и прак ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru