Вопрос 2: Как звучит теорема об интегрировании функциональной последовательности? Сформулируйте условие интегрируемости функционального ряда.
Ответ: Теорема 2. Если последовательность функций
, непрерывных на
, сходится равномерно на указанном отрезке к функции
, то для
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива формула:
.
Следствие. Пусть функции
,
N непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке. Тогда для
функциональный ряд вида
будет равномерно сходиться на отрезке
к
или к
, т.е. функциональный ряд можно почленно интегрировать:
.
Вопрос 3: Как звучат теорема о почленном дифференцировании функциональных последовательностей и рядов?
Ответ: Теорема 4. Пусть последовательность функций
, непрерывно дифференцируемых на
, и последовательность их производных
равномерно сходятся на указанном отрезке. Тогда предел
последовательности непрерывно диффепенцируемых функций
непрерывно дифференцируем на указанном отрезке и верно равенство:
или
.
Следствие. Пусть функции
непрерывно дифференцируемы на
и функциональные ряды:
равномерно сходятся на
. Тогда сумма функционального ряда
непрерывно дифференцируема на указанном отрезке и верно равенство:
=
.
Преподаватель: Итак, а теперь приступим непосредственно к выполнению упражнений.
При объяснении нового материала, на экран телевизора выводится задание с подробным решением, преподаватель комментирует решение, студенты записывают в тетради.
При объяснении материала следует обратиться к технологической карте по теме "Функциональные последовательности и ряды" [16], в которой отмечены затруднения при изучении данной темы, а также типичные ошибки, допускаемые студентами.
Образование, педагогика, воспитание:
Учебные кинофильмы на уроках
Учебное кино – самое популярное из всех технических средств обучения, применяемое в рамках видеометода. Учебное кино можно с успехом включать в урок в тех случаях, когда необходимо: показать (или смоделировать) явления и процессы (реже предметы), увидеть которые невозможно вообще или без особой тех ...
Физическая подготовка детей к школе
Для успешного обучения в школе ребенку необходима не только умственная, нравственно-волевая подготовка, но и прежде всего физическая. Меняющийся уклад жизни, нарушение старых привычек, возрастание умственных нагрузок, установление новых взаимоотношений с учителем и сверстниками – факторы значительн ...
Компоненты и развитие
профессионального самопределения
Профессиональное развитие человека в целом онтогенетически связано с основными видами его деятельности, соответствующими возрастным периодам. Возрастное развитие человека как субъекта труда Е.А. Климов представляет в виде трех периодов, в каждом из которых выделяет и характеризует стадии развития п ...