Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 23

Значит, к ряду можно применить теорему о почленном дифференцировании.

Ответ: Теорему о почленом дифференцировании применить можно.

Пример №31 (№108 из [10], студент самостоятельно)

Убедиться, что ряд можно дифференцировать почленно.

Решение

Члены функционального ряда являются непрерывно дифференцируемыми функциями при R.

Очевидно неравенство при R, N.

Сравним функциональный и числовой ряды и .

При R, N справедливо неравенство .

Числовой положительный ряд является сходящимся рядом, так как представляет собой ряд Дирихле с .

Значит, по признаку Вейерштрасса, функциональный ряд сходится равномерно и абсолютно при R.

Найдем производную общего элемента заданного функционального ряда: при R.

Составим функциональный ряд из производных членов функционального ряда :

.

Члены этого функционального ряда являются непрерывными функциями при R.

Кроме того, функциональный ряд абсолютно и равномерно сходится при R в соответствии с признаком Вейерштрасса. Действительно, так как

a) для R, N;

б) при R;

в) числовой положительный сходящийся ряд (ряд Дирихле с ).

Значит, к заданному функциональному ряду можно применить теорему о почленном дифференцировании.

Ответ: Можно почленно дифференцировать заданный функциональный ряд.

Преподаватель: А теперь рассмотрим задания на возможность интегрируемости ряда.

Пример №32 (№344 из [7], с комментариями преподавателя).

Законно ли применение к ряду

теоремы об интегрировании функциональных рядов в промежутках ?

Решение

Для того, чтобы функциональный ряд можно было почленно проинтегрировать на отрезке, необходимым является непрерывность его членов и равномерная сходимость ряда на этом промежутке.

Страницы: 18 19 20 21 22 23 24 25 26 27 28

Образование, педагогика, воспитание:

Свойства равномерно сходящихся функциональных последовательностей и рядов
Теорема 4. Если функции непрерывны в точке и функциональный ряд равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке . Доказательство. Пусть - частичная сумма функционального ряда. В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняе ...

Коррекция психофизических недостатков умственно отсталых младших школьников средствами физических упражнений
Учитывая состояние диагностики состояния физического развития умственно отсталых младших школьников мы проводили уроки ритмики в течение третьей четверти 2000/2001 учебного года, используя упражнения, предложенные Е.С. Черником ( ), музыкально-двигательные упражнения Е.П. Раевской ( ), занятия ритм ...

Проблемы социализации детей в педагогике и психологии
Социальная психология понимает социализацию как процесс, обеспечивающий включение в ту или иную социальную группу или общность. Социализация представляет собой развитие человека на протяжении всей его жизни во взаимодействии с окружающей средой, в процессе которого он усваивает социальный опыт и ак ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru