Значит, к ряду можно применить теорему о почленном дифференцировании.
Ответ: Теорему о почленом дифференцировании применить можно.
Пример №31 (№108 из [10], студент самостоятельно)
Убедиться, что ряд можно дифференцировать почленно.
Решение
Члены функционального ряда являются непрерывно дифференцируемыми функциями при
R.
Очевидно неравенство при
R,
N.
Сравним функциональный и числовой ряды и
.
При R,
N справедливо неравенство
.
Числовой положительный ряд является сходящимся рядом, так как представляет собой ряд Дирихле с
.
Значит, по признаку Вейерштрасса, функциональный ряд сходится равномерно и абсолютно при
R.
Найдем производную общего элемента заданного функционального ряда: при
R.
Составим функциональный ряд из производных членов функционального ряда :
.
Члены этого функционального ряда являются непрерывными функциями при R.
Кроме того, функциональный ряд абсолютно и равномерно сходится при
R в соответствии с признаком Вейерштрасса. Действительно, так как
a) для
R,
N;
б) при
R;
в) числовой положительный сходящийся ряд (ряд Дирихле с
).
Значит, к заданному функциональному ряду можно применить теорему о почленном дифференцировании.
Ответ: Можно почленно дифференцировать заданный функциональный ряд.
Преподаватель: А теперь рассмотрим задания на возможность интегрируемости ряда.
Пример №32 (№344 из [7], с комментариями преподавателя).
Законно ли применение к ряду
теоремы об интегрировании функциональных рядов в промежутках ?
Решение
Для того, чтобы функциональный ряд можно было почленно проинтегрировать на отрезке, необходимым является непрерывность его членов и равномерная сходимость ряда на этом промежутке.
Образование, педагогика, воспитание:
Психолого-лингвистические и дидактико-методические основы обучения чтению
как виду речевой деятельности
В психологической литературе речевая деятельность определяется как "реализация общественно-коммуникативной деятельности людей в процессе их вербального общения". Способами её реализации, или видами речевой деятельности, являются говорение, слушание, чтение и письмо. Как справедливо отмеча ...
Дидактические игры на уроках русского языка и чтения в специальной школе
VIII вида
Одним из эффективных средств развития интереса к учебному предмету является использование на уроках дидактических игр и занимательного материала, что способствует созданию у учеников эмоционального настроя, вызывает положительное отношение к выполняемой работе, улучшает общую работоспособность, дае ...
Типы педагогических задач и их характеристика
По временному признаку принято различать три большие группы педагогических задач - стратегические, тактические и оперативные. Стратегические задачи - это своеобразные "сверхзадачи". Они определяют исходные цели и конечные результаты педагогической деятельности. В реальном педагогическом п ...