Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 1

Теорема 4. Если функции непрерывны в точке и функциональный ряд равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке . чем занять себя в свободное время

Доказательство.

Пусть - частичная сумма функционального ряда.

В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняется и равномерная сходимость последовательности частичных сумм.

На основании определения равномерной сходимости функциональной последовательности можно записать: 0 (), N,:

или .

Так как функции исследуемого ряда непрерывны в точке по условию теоремы, то частичная сумма будет непрерывна в точке , как сумма состоящая из конечного числа непрерывных функций по теореме о непрерывности функции полученной в результате алгебраического сложения и умножения двух непрерывных функций:

=++…+.

На основании определения непрерывности функции в точке на языке можно записать: 0 будет существовать такое

, , :

.

Так как последовательность функций будет равномерно сходиться к предельной функции , то и последовательность функций будет тоже равномерно сходиться к .

На основании определения равномерной сходимости функциональной последовательности можно записать: (0), (N), ():

.

Сложим три неравенства одинакового смысла пунктов 3,5,7: ++. Воспользуемся свойством модуля суммы действительных чисел , получим:

.

Следовательно, - условие непрерывности функции в точке .

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Анализ результатов исследования общения со сверстниками у детей старшего дошкольного возраста
Исследование проводилось в МОУГ № 4 г. Тулы (курсы подготовки к школе) Выборку составили 20 детей старшего дошкольного возраста, по 10 человек в экспериментальной и контрольной группах. Список детей в экспериментальной и контрольной группах представлен в таблице 3. Таблица 3 Список детей в эксперим ...

История развития и становления
Идея проблемного обучения не нова. Величайшие педагоги прошлого всегда искали пути преобразования процесса учения в радостный процесс познания, развития умственных сил и способностей учащихся (Я. А. Коменский, Ж. Ж. Руссо, И. Г. Песталоцци, Ф. А. Дистервег, К. Д. Ушинский и др.). В XX столетии идеи ...

Психологические и психофизиологические особенности младших школьников
Тенденции развития психологических свойств такова: от большей слабости и инертности нервной системы в раннем возрасте к увеличению ее выносливости и подвижности по мере взросления. Это означает, что младшие школьники, особенно первоклассники, быстро достигают предела работоспособности, в очень мало ...

Навигация по сайту

© 2019 Copyright www.ecsir.ru