Теорема 4. Если функции непрерывны в точке
и функциональный ряд
равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке
.
чем занять себя в свободное время
Доказательство.
Пусть - частичная сумма функционального ряда.
В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняется и равномерная сходимость последовательности частичных сумм.
На основании определения равномерной сходимости функциональной последовательности можно записать: 0 (
),
N,
:
или
.
Так как функции исследуемого ряда непрерывны в точке
по условию теоремы, то частичная сумма
будет непрерывна в точке
, как сумма состоящая из конечного числа непрерывных функций по теореме о непрерывности функции полученной в результате алгебраического сложения и умножения двух непрерывных функций:
=
+
+…+
.
На основании определения непрерывности функции в точке на языке
можно записать:
0
будет существовать такое
,
,
:
.
Так как последовательность функций будет равномерно сходиться к предельной функции
, то и последовательность функций
будет тоже равномерно сходиться к
.
На основании определения равномерной сходимости функциональной последовательности можно записать: (
0), (
N), (
):
.
Сложим три неравенства одинакового смысла пунктов 3,5,7: +
+
. Воспользуемся свойством модуля суммы действительных чисел
, получим:
.
Следовательно, - условие непрерывности функции
в точке
.
Образование, педагогика, воспитание:
Методические аспекты изучения персоналий в школьном курсе истории
Главный элемент содержания исторического образования – знания. Они включают в себя сведения, познания в области истории, концентрируя социальный опыт человечества. Знания создают научную картину развития общества, дают представление об исторической действительности и предполагают постижение её чело ...
Творческие игры как средство
формирования коммуникативных навыков учащихся
В этом пункте рассмотрим два вида игр – это ролевые игры и драматизацию. Урок иностранного языка рассматривается как социальное явление, где классная аудитория – это определенная социальная среда, в которой учитель и учащиеся вступают в определенные социальные отношения друг с другом, где учебный п ...
Учебные тренинговые игры на уроках истории России и исторического краеведения
Сегодня практически любой учитель истории применяет в своей деятельности нетрадиционные формы построения уроков. Это связано со становлением нового стиля педагогического мышления учителя, ориентирующегося на эффективное решение образовательно-воспитательных задач в условиях скромного количества пре ...