Теорема 4. Если функции
непрерывны в точке
и функциональный ряд
равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке
.
Доказательство.
Пусть
- частичная сумма функционального ряда.
В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняется и равномерная сходимость последовательности частичных сумм.
На основании определения равномерной сходимости функциональной последовательности можно записать:
0 (
),
N,
:
или
.
Так как функции
исследуемого ряда непрерывны в точке
по условию теоремы, то частичная сумма
будет непрерывна в точке
, как сумма состоящая из конечного числа непрерывных функций по теореме о непрерывности функции полученной в результате алгебраического сложения и умножения двух непрерывных функций:
=
+
+…+
.
На основании определения непрерывности функции
в точке на языке
можно записать:
0
будет существовать такое
,
,
:
.
Так как последовательность функций
будет равномерно сходиться к предельной функции
, то и последовательность функций
будет тоже равномерно сходиться к
.
На основании определения равномерной сходимости функциональной последовательности
можно записать: (
0), (
N), (
):
.
Сложим три неравенства одинакового смысла пунктов 3,5,7:
+
+
. Воспользуемся свойством модуля суммы действительных чисел
, получим:
.
Следовательно,
- условие непрерывности функции
в точке
.
Образование, педагогика, воспитание:
Подготовка и проведение учебно-воспитательного занятия с
применением видеометода
При подготовке к уроку или внеклассному мероприятию, на котором будут применяться технические средства обучения необходимо, прежде всего, ознакомиться с 1) санитарно-гигиеническими требованиями к организации учебно-воспитательного процесса с использованием в нём электронной техники, и 2) действующе ...
Цели обучения иностранному языку
Под «целью» принято понимать идеальный образ планируемого результата, закодированный в мозгу «образ потребного будущего», «пусковой механизм всякой деятельности». Цель – то, к чему стремятся, что намечено достигнуть, предел, намерение, которое должно осуществить. Цель – это планируемый результат. Ц ...
Возможности хоккея в реализации задачи физического воспитания детей
старшего дошкольного возраста
В примерной основной общеобразовательной программе дошкольного образования "Детство", которая полностью соответствует Федеральным государственным требованиям, в образовательной области "Физическая культура" предусмотрено обучению игре в баскетбол детей шестого и седьмого года жи ...