Теорема 4. Если функции непрерывны в точке и функциональный ряд равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке . чем занять себя в свободное время
Доказательство.
Пусть - частичная сумма функционального ряда.
В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняется и равномерная сходимость последовательности частичных сумм.
На основании определения равномерной сходимости функциональной последовательности можно записать: 0 (), N,:
или .
Так как функции исследуемого ряда непрерывны в точке по условию теоремы, то частичная сумма будет непрерывна в точке , как сумма состоящая из конечного числа непрерывных функций по теореме о непрерывности функции полученной в результате алгебраического сложения и умножения двух непрерывных функций:
=++…+.
На основании определения непрерывности функции в точке на языке можно записать: 0 будет существовать такое
, , :
.
Так как последовательность функций будет равномерно сходиться к предельной функции , то и последовательность функций будет тоже равномерно сходиться к .
На основании определения равномерной сходимости функциональной последовательности можно записать: (0), (N), ():
.
Сложим три неравенства одинакового смысла пунктов 3,5,7: ++. Воспользуемся свойством модуля суммы действительных чисел , получим:
.
Следовательно, - условие непрерывности функции в точке .
Образование, педагогика, воспитание:
Методические рекомендации по подбору дидактических игр и руководство ими
Подбор дидактических игр для обучения детей математике проводится в соответствии с программными требованиями. Каждая дидактическая игра должна быть направлена на решение той или иной учебной задачи. При подборе игр необходимо учитывать особенности участия в них детей, интерес к различным играм и уп ...
Методики изучения психологической готовности слабослышащих дошкольников к
обучению в школе
При изучении психологической готовности к школьному обучению целесообразно использовать комплексный подход, в котором осуществляется диагностика эмоционально-волевой сферы, умственной и мотивационной готовности. Диагностика эмоционально-волевой готовности включает определение уровня эмоционально-во ...
Коррекция психофизических недостатков умственно
отсталых младших школьников средствами физических упражнений
Учитывая состояние диагностики состояния физического развития умственно отсталых младших школьников мы проводили уроки ритмики в течение третьей четверти 2000/2001 учебного года, используя упражнения, предложенные Е.С. Черником ( ), музыкально-двигательные упражнения Е.П. Раевской ( ), занятия ритм ...