Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 1

Теорема 4. Если функции непрерывны в точке и функциональный ряд равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке .

Доказательство.

Пусть - частичная сумма функционального ряда.

В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняется и равномерная сходимость последовательности частичных сумм.

На основании определения равномерной сходимости функциональной последовательности можно записать: 0 (), N,:

или .

Так как функции исследуемого ряда непрерывны в точке по условию теоремы, то частичная сумма будет непрерывна в точке , как сумма состоящая из конечного числа непрерывных функций по теореме о непрерывности функции полученной в результате алгебраического сложения и умножения двух непрерывных функций:

=++…+.

На основании определения непрерывности функции в точке на языке можно записать: 0 будет существовать такое

, , :

.

Так как последовательность функций будет равномерно сходиться к предельной функции , то и последовательность функций будет тоже равномерно сходиться к .

На основании определения равномерной сходимости функциональной последовательности можно записать: (0), (N), ():

.

Сложим три неравенства одинакового смысла пунктов 3,5,7: ++. Воспользуемся свойством модуля суммы действительных чисел , получим:

.

Следовательно, - условие непрерывности функции в точке .

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Материалы и оборудование для работы акварелью
Акварель – прекрасный материал для работы на пленере. Она дает возможность быстро и точно передать состояние природы. Этюды акварелью пишутся в технике «а-ля прима» или «по-сырому». Основой для акварели является бумага, которую часто предварительно смачивают водой для достижения особой размытой фор ...

Ценность младшего школьного возраста
Глубокие изменения, происходящие в психологическом облике младшего школьника, свидетельствуют о широких возможностях развития ребенка на данном возрастном этапе. В течение этого периода на качественно новом уровне реализуется потенциал развития ребенка как активного субъекта, познающего окружающий ...

Понятие интеграция; интегрированный урок
Интеграция - объединение экономических субъектов, углубление их взаимодействия, развитие связей между ними. Другое более точно и объёмно дано определение интеграции в работе Кульневича С.В., Лакоценина Т.Т. Интеграция – это глубокое взаимопроникновение, слияние, насколько это возможно, в одном учеб ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru