Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 1

Теорема 4. Если функции непрерывны в точке и функциональный ряд равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке . чем занять себя в свободное время

Доказательство.

Пусть - частичная сумма функционального ряда.

В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняется и равномерная сходимость последовательности частичных сумм.

На основании определения равномерной сходимости функциональной последовательности можно записать: 0 (), N,:

или .

Так как функции исследуемого ряда непрерывны в точке по условию теоремы, то частичная сумма будет непрерывна в точке , как сумма состоящая из конечного числа непрерывных функций по теореме о непрерывности функции полученной в результате алгебраического сложения и умножения двух непрерывных функций:

=++…+.

На основании определения непрерывности функции в точке на языке можно записать: 0 будет существовать такое

, , :

.

Так как последовательность функций будет равномерно сходиться к предельной функции , то и последовательность функций будет тоже равномерно сходиться к .

На основании определения равномерной сходимости функциональной последовательности можно записать: (0), (N), ():

.

Сложим три неравенства одинакового смысла пунктов 3,5,7: ++. Воспользуемся свойством модуля суммы действительных чисел , получим:

.

Следовательно, - условие непрерывности функции в точке .

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Игровые технологии
В теории и практике работы школ сегодня существует множество вариантов учебно-воспитательного процесса. Каждый автор и исполнитель привносит в педагогический процесс что-то свое, индивидуальное, в связи, с чем говорят, что каждая конкретная технология является авторской. С этим мнением можно соглас ...

Исследование опыта развития познавательной активности учащихся на уроках биологии
Актуальность проблемы развития познавательной активности учащихся на основе биологического образования и наличие необходимых научных предпосылок для решения этой проблемы послужили основанием для выбора темы исследования: «Развитие познавательной активности учащихся на уроках биологии». Исследовани ...

Формирование межкультурной компетенции учащихся как актуальная социально-педагогическая проблема
В основе богатства человеческой цивилизации лежит многообразие культур и языков, которые находятся в постоянной взаимосвязи и взаимодействии. В современном мире проблема взаимопонимания становится очень важной с развитием политических, экономических, научно-технических и культурных связей. Все боль ...

Навигация по сайту

© 2023 Copyright www.ecsir.ru