Теорема 4. Если функции непрерывны в точке
и функциональный ряд
равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке
.
чем занять себя в свободное время
Доказательство.
Пусть - частичная сумма функционального ряда.
В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняется и равномерная сходимость последовательности частичных сумм.
На основании определения равномерной сходимости функциональной последовательности можно записать: 0 (
),
N,
:
или
.
Так как функции исследуемого ряда непрерывны в точке
по условию теоремы, то частичная сумма
будет непрерывна в точке
, как сумма состоящая из конечного числа непрерывных функций по теореме о непрерывности функции полученной в результате алгебраического сложения и умножения двух непрерывных функций:
=
+
+…+
.
На основании определения непрерывности функции в точке на языке
можно записать:
0
будет существовать такое
,
,
:
.
Так как последовательность функций будет равномерно сходиться к предельной функции
, то и последовательность функций
будет тоже равномерно сходиться к
.
На основании определения равномерной сходимости функциональной последовательности можно записать: (
0), (
N), (
):
.
Сложим три неравенства одинакового смысла пунктов 3,5,7: +
+
. Воспользуемся свойством модуля суммы действительных чисел
, получим:
.
Следовательно, - условие непрерывности функции
в точке
.
Образование, педагогика, воспитание:
Психологические и психофизиологические особенности
младших школьников
Тенденции развития психологических свойств такова: от большей слабости и инертности нервной системы в раннем возрасте к увеличению ее выносливости и подвижности по мере взросления. Это означает, что младшие школьники, особенно первоклассники, быстро достигают предела работоспособности, в очень мало ...
Роль и место самостоятельного домашнего чтения в обучении учащихся старших
классов иностранному языку
Чтение на иностранном языке как опосредованная форма общения предоставляет возможности для расширения кругозора учащихся за счёт познавательной информации, заложенной в текстах, для воздействия на их интересы, чувства и эмоции. Как справедливо отмечает Л.А. Чернявская, оно оказывает влияние на разв ...
Факторы становления имиджа педагога
Фактор (от лат. factor – делающий, производящий) – это причина, движущая сила какого-либо процесса, определяющая его характер или отдельные его черты. Как и любая деятельность, деятельность по созданию имиджа начинается с мотива, движущей силой формирования имиджа, и определяется им. В основе деяте ...