Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 1

Теорема 4. Если функции непрерывны в точке и функциональный ряд равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке . чем занять себя в свободное время

Доказательство.

Пусть - частичная сумма функционального ряда.

В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняется и равномерная сходимость последовательности частичных сумм.

На основании определения равномерной сходимости функциональной последовательности можно записать: 0 (), N,:

или .

Так как функции исследуемого ряда непрерывны в точке по условию теоремы, то частичная сумма будет непрерывна в точке , как сумма состоящая из конечного числа непрерывных функций по теореме о непрерывности функции полученной в результате алгебраического сложения и умножения двух непрерывных функций:

=++…+.

На основании определения непрерывности функции в точке на языке можно записать: 0 будет существовать такое

, , :

.

Так как последовательность функций будет равномерно сходиться к предельной функции , то и последовательность функций будет тоже равномерно сходиться к .

На основании определения равномерной сходимости функциональной последовательности можно записать: (0), (N), ():

.

Сложим три неравенства одинакового смысла пунктов 3,5,7: ++. Воспользуемся свойством модуля суммы действительных чисел , получим:

.

Следовательно, - условие непрерывности функции в точке .

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Профильное обучение
Как известно, становление профильного обучения на старшей ступени общего образования является одним из приоритетных направлений модернизации системы общего образования в Российской Федерации. Профильное обучение - средство дифференциации и индивидуализации обучения, позволяющее за счет изменений в ...

Значение и особенности применения дидактических игр на уроках информатики
Современный период развития цивилизационного общества по праву называется этапом информатизации. Характерной чертой этого периода является тот факт, что доминирующим видом деятельности в сфере общественногo производства, повышающим его эффективность и наукоемкость становится сбор, продуцирование, о ...

Игры, развивающие силу голоса и темп речи
Воспитания звуковой культуры речи у ребенка данного возраста направлено на развитие у него слухового восприятия, усвоение и закрепление правильного звукопроизношения. Голосовой аппарат малыша еще недостаточно окреп. Ребенок не всегда может правильно им пользоваться, часто говорит тихо, шепотом или ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru