Теорема доказана .
Замечание
1) Полученное утверждение теоремы можно переписать в следующем виде:
или
,
так как
,
его сумма
,
следовательно, 
.
2) Так как каждая функция
непрерывна в точке
, то для любой функции можно написать утверждение:
, следовательно,
. Таким образом, предел от функционального ряда
равен сумме пределов его элементов.
Известно, что если последовательность частичных сумм функционального ряда
равномерно сходится, то этот функциональный ряд тоже равномерно сходится на указанном множестве. Это обстоятельство позволяет переформулировать теорему 4 для функциональных рядов в соответствующую теорему для функциональных последовательностей.
Теорема 5. Если функции
,
N непрерывны в точке ![]()
и равномерно сходятся к функции
на множестве Х, то и функция
непрерывна в точке
и выполняется равенство:
(предельные переходы по х и по n перестановочны).
Доказательство
Так как функции
равномерно сходятся в предельной функции
на множестве Х, на основании теоремы 4, то можно записать равенство:
.
Функция
является непрерывной в точке
множества Х на основании теоремы 4. Так как
непрерывна в точке
, то можно записать следующее утверждение:
(определение 1 непрерывности функции в точке).
Используя равенство пункта 1, подставим вместо
левую часть утверждения
.
Так как по условию теоремы функции
непрерывны в точке ![]()
, то на основании определения 1 непрерывности функции в точке можно записать
.
Перейдем к пределу при
в последнем равенстве:
.
Так как последовательность функций
будет равномерно сходиться к предельной функции
, то верно следующее утверждение:
Образование, педагогика, воспитание:
Игры и упражнения для развития речи и ознакомления с окружающим
Для успешного развития детей важно, чтобы они с детства приобрели жизненно необходимые сведения об окружающих их предметах и явлениях. На втором году жизни, когда дети свободно передвигаются, они постоянно сталкиваются с различными предметами, им нужно иметь некоторые представления о свойствах и на ...
Коррекция психофизических недостатков умственно
отсталых младших школьников средствами физических упражнений
Учитывая состояние диагностики состояния физического развития умственно отсталых младших школьников мы проводили уроки ритмики в течение третьей четверти 2000/2001 учебного года, используя упражнения, предложенные Е.С. Черником ( ), музыкально-двигательные упражнения Е.П. Раевской ( ), занятия ритм ...
Характеристика диагностической программы исследования общения со
сверстниками у детей старшего дошкольного возраста
Анализ психолого-педагогической литературы по проблеме исследования позволил нам разработать диагностическую программу, направленную на выявление особенностей общения со сверстниками в старшем дошкольном возрасте. Разработанная нами диагностическая программа была использована на констатирующем и ко ...