Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 2

Теорема доказана .

Замечание

1) Полученное утверждение теоремы можно переписать в следующем виде:

или ,

так как ,

его сумма ,

следовательно, .

2) Так как каждая функция непрерывна в точке , то для любой функции можно написать утверждение: , следовательно, . Таким образом, предел от функционального рядаравен сумме пределов его элементов.

Известно, что если последовательность частичных сумм функционального ряда равномерно сходится, то этот функциональный ряд тоже равномерно сходится на указанном множестве. Это обстоятельство позволяет переформулировать теорему 4 для функциональных рядов в соответствующую теорему для функциональных последовательностей.

Теорема 5. Если функции , N непрерывны в точке и равномерно сходятся к функции на множестве Х, то и функция непрерывна в точке и выполняется равенство: (предельные переходы по х и по n перестановочны).

Доказательство

Так как функции равномерно сходятся в предельной функции на множестве Х, на основании теоремы 4, то можно записать равенство: .

Функция является непрерывной в точке множества Х на основании теоремы 4. Так как непрерывна в точке , то можно записать следующее утверждение: (определение 1 непрерывности функции в точке).

Используя равенство пункта 1, подставим вместо левую часть утверждения .

Так как по условию теоремы функции непрерывны в точке , то на основании определения 1 непрерывности функции в точке можно записать .

Перейдем к пределу при в последнем равенстве:

.

Так как последовательность функций будет равномерно сходиться к предельной функции , то верно следующее утверждение:

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Средний этап обучения
Работа с аутентичным текстом организуется так, что упражнения перестают быть упражнениями, а становятся речевой ситуацией и выполняются часто в форме игры, в том числе ролевой, группами, индивидуально, коллективно. Рассмотрим технологию работы со следующими типами текстов: текст-образец; рассказ; п ...

Отечественный опыт профильного обучения
Идея создания профильных школ не нова. Реальные гимназии, существовавшие в 19 веке в России, были прообразом будущих школ с профильными классами. Престижные спецшколы советского времени тоже были в определённой степени профильными. И за рубежом практика профильного обучения давно и успешно применяе ...

Дискуссионные методы преподавания происхождения сущности государства и права в современной школе
Большую роль в правовом образовании играют дискуссионные методы. Целесообразно их использовать при обучении праву в старших классах. Дискуссия позволяет развивать самостоятельность школьников, которые высказывают свою точку зрения на проблему. Для проведения дискуссии необходимо сформулировать опре ...

Навигация по сайту

© 2019 Copyright www.ecsir.ru