Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 2

Теорема доказана .

Замечание

1) Полученное утверждение теоремы можно переписать в следующем виде:

или ,

так как ,

его сумма ,

следовательно, .

2) Так как каждая функция непрерывна в точке , то для любой функции можно написать утверждение: , следовательно, . Таким образом, предел от функционального рядаравен сумме пределов его элементов.

Известно, что если последовательность частичных сумм функционального ряда равномерно сходится, то этот функциональный ряд тоже равномерно сходится на указанном множестве. Это обстоятельство позволяет переформулировать теорему 4 для функциональных рядов в соответствующую теорему для функциональных последовательностей.

Теорема 5. Если функции , N непрерывны в точке и равномерно сходятся к функции на множестве Х, то и функция непрерывна в точке и выполняется равенство: (предельные переходы по х и по n перестановочны).

Доказательство

Так как функции равномерно сходятся в предельной функции на множестве Х, на основании теоремы 4, то можно записать равенство: .

Функция является непрерывной в точке множества Х на основании теоремы 4. Так как непрерывна в точке , то можно записать следующее утверждение: (определение 1 непрерывности функции в точке).

Используя равенство пункта 1, подставим вместо левую часть утверждения .

Так как по условию теоремы функции непрерывны в точке , то на основании определения 1 непрерывности функции в точке можно записать .

Перейдем к пределу при в последнем равенстве:

.

Так как последовательность функций будет равномерно сходиться к предельной функции , то верно следующее утверждение:

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Гимнастика для пальчиков
Гимнастика для пальцев рук делится на пассивную и активную. Пассивная гимнастика рекомендуется как предварительный этап перед активной гимнастикой детям с низким уровнем развития мелкой моторики. Затем следует перейти к упражнениям активной пальцевой I гимнастики. Все упражнения проводятся в игрово ...

Медико-педагогический контроль
Кроме работы по оказанию помощи педагогам, родителям, необходимо помнить и о функциях контроля за санитарно-гигиеническим состоянием мест пребывания детей, физической подготовленностью, уровнем физического, интеллектуального, эмоционально-нравственного развития. Для этого в дошкольном учреждении ор ...

Классификация технических средств обучения
Комплекс технических средств, предлагаемых для использования в процессе обучения, год от года становится всё сложнее и многообразнее. От умения педагога эффективно использовать эти средства в немалой степени зависит конечный результат восприятия учениками новой для них информации. Технические средс ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru