Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 2

Теорема доказана .

Замечание

1) Полученное утверждение теоремы можно переписать в следующем виде:

или ,

так как ,

его сумма ,

следовательно, .

2) Так как каждая функция непрерывна в точке , то для любой функции можно написать утверждение: , следовательно, . Таким образом, предел от функционального рядаравен сумме пределов его элементов.

Известно, что если последовательность частичных сумм функционального ряда равномерно сходится, то этот функциональный ряд тоже равномерно сходится на указанном множестве. Это обстоятельство позволяет переформулировать теорему 4 для функциональных рядов в соответствующую теорему для функциональных последовательностей.

Теорема 5. Если функции , N непрерывны в точке и равномерно сходятся к функции на множестве Х, то и функция непрерывна в точке и выполняется равенство: (предельные переходы по х и по n перестановочны).

Доказательство

Так как функции равномерно сходятся в предельной функции на множестве Х, на основании теоремы 4, то можно записать равенство: .

Функция является непрерывной в точке множества Х на основании теоремы 4. Так как непрерывна в точке , то можно записать следующее утверждение: (определение 1 непрерывности функции в точке).

Используя равенство пункта 1, подставим вместо левую часть утверждения .

Так как по условию теоремы функции непрерывны в точке , то на основании определения 1 непрерывности функции в точке можно записать .

Перейдем к пределу при в последнем равенстве:

.

Так как последовательность функций будет равномерно сходиться к предельной функции , то верно следующее утверждение:

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Физическая подготовленность детей дошкольного возраста
Физическое воспитание в детском саду и начальной школе предусматривает охрану и укрепление здоровья, полноценное физическое развитие и направлено на своевременное формирование у детей двигательных навыков и умений. Гармонично развитые физические качества играют решающую роль в игровой и других вида ...

Осознание педагогической задачи, анализ исходных данных и постановка педагогического диагноза
В творческом процессе педагога одновременно или последовательно должны осмысливаться разные педагогические задачи. Прежде всего это должна быть общая педагогическая задача всей деятельности учителя, которая выступает как его общая концепция. Затем должна осмысливаться этапная педагогическая задача, ...

Цели организации элективных курсов по математике
Принципиальным положением организации школьного математического образования в настоящее время является дифференциация обучения математике – уровневая дифференциация и профильная дифференциация в старших классах средней школы. Программа по математике для средней общеобразовательной школы, работающей ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru