Теорема доказана .
Замечание
1) Полученное утверждение теоремы можно переписать в следующем виде:
или
,
так как
,
его сумма
,
следовательно, 
.
2) Так как каждая функция
непрерывна в точке
, то для любой функции можно написать утверждение:
, следовательно,
. Таким образом, предел от функционального ряда
равен сумме пределов его элементов.
Известно, что если последовательность частичных сумм функционального ряда
равномерно сходится, то этот функциональный ряд тоже равномерно сходится на указанном множестве. Это обстоятельство позволяет переформулировать теорему 4 для функциональных рядов в соответствующую теорему для функциональных последовательностей.
Теорема 5. Если функции
,
N непрерывны в точке ![]()
и равномерно сходятся к функции
на множестве Х, то и функция
непрерывна в точке
и выполняется равенство:
(предельные переходы по х и по n перестановочны).
Доказательство
Так как функции
равномерно сходятся в предельной функции
на множестве Х, на основании теоремы 4, то можно записать равенство:
.
Функция
является непрерывной в точке
множества Х на основании теоремы 4. Так как
непрерывна в точке
, то можно записать следующее утверждение:
(определение 1 непрерывности функции в точке).
Используя равенство пункта 1, подставим вместо
левую часть утверждения
.
Так как по условию теоремы функции
непрерывны в точке ![]()
, то на основании определения 1 непрерывности функции в точке можно записать
.
Перейдем к пределу при
в последнем равенстве:
.
Так как последовательность функций
будет равномерно сходиться к предельной функции
, то верно следующее утверждение:
Образование, педагогика, воспитание:
Игры и упражнения с предметами
В воспитании детей раннего возраста очень важным является обогащение и совершенствование чувственного опыта в процессе деятельности. Характерной для этой возрастной ступени деятельностью является деятельность предметная. Ее называют ведущей не только потому, что она преобладает, но и потому, что им ...
Социально-воспитательное направление работы
социального педагога школы
В МОУ "Лянторская средняя общеобразовательная школа №5" в системе ведется работа с детьми девиантного поведения. Основные задачи образовательного учреждения: Дать каждому ребенку, с учетом его психофизических возможностей, тот уровень образования и воспитания, который поможет ему не потер ...
Учебно-познавательная деятельность и технология ее организации
Учебно-познавательная деятельность - это специально организуемое самим обучаемым или извне познание с целью овладения богатствами культуры, накопленной человечеством. Ее предметным результатом являются научные знания, умения, навыки, формы поведения и виды деятельности, которыми овладевает обучаемы ...