.
С учетом записанного равенства, равенство пункта 5 примет вид:
.
Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые:
.
Теорема доказана [14].
§9. Почленное интегрирование функциональных рядов
Теорема 6. Если последовательность непрерывных на
функций
сходится равномерно на указанном отрезке к предельной функции
, то
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива следующая формула:
.
1) Так как по условию теоремы последовательность функций
равномерно сходится к пределу функции
на
т.е.
, то
функция
будет непрерывна на
на основании теоремы 5.
2) Известна теорема, что если функция непрерывна на
, то она интегрируема на указанном отрезке, т.е. существует определенный интеграл
,
3) В силу равномерной сходимости последовательности функции
к пределу функции
на основании определения равномерной сходимости функциональной последовательности можно записать:
.
4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:
=
(на основании свойства определенного интеграла).
5) С учетом неравенства пункта 3 можно написать:
.
6) Если правую часть последнего неравенства заменить на
, то получим неравенство:
, что равносильно выражению
, но
, поэтому
,
.
Теорема доказана [14].
Следствие. Пусть функции
непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке, тогда
функциональный ряд вида
будет равномерно ходиться на отрезке
к
или к
, т.е. справедлива
Образование, педагогика, воспитание:
Цель и задачи констатирующего эксперимента. Характеристика детей,
участвующих в экспериментальном исследовании
Целью констатирующего эксперимента явилось выявление нарушений формирования фонетико-фонетических процессов у дошкольников старшего возраста с фонетико-фонематическим недоразвитием речи. Для достижения поставленной цели мы поставили перед собой следующие задачи: 1. Подобрать методические рекомендац ...
Отбор грамматического материала для обучения устной речи и
чтению
Сущность отбора грамматического материала для школы заключается в создании такого грамматического минимума, который был бы посилен для усвоения и достаточен для выполнения коммуникативно-значимых задач обучения. При решении вопроса об отборе грамматического минимума учитываются источники и принципы ...
Дидактические процессы в предмете физическая культура
Спорт – это значимое социальное явление, несмотря на это он совсем недавно попал в область внимания социологов. До сих пор существует мнение, что он прерогатива спортивных наук. Все же сегодня большинство исследователей согласны с тем, что его нужно изучать не только с точки зрения физкультурной те ...