Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 3

.

С учетом записанного равенства, равенство пункта 5 примет вид:

.

Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые: .

Теорема доказана [14].

§9. Почленное интегрирование функциональных рядов

Теорема 6. Если последовательность непрерывных на функций сходится равномерно на указанном отрезке к предельной функции , то последовательность определенных интегралов с переменным верхним пределом будет сходиться равномерно на к определенному интегралу , причем будет справедлива следующая формула:

.

1) Так как по условию теоремы последовательность функций равномерно сходится к пределу функции на т.е. , то

функция будет непрерывна на на основании теоремы 5.

2) Известна теорема, что если функция непрерывна на , то она интегрируема на указанном отрезке, т.е. существует определенный интеграл

,

3) В силу равномерной сходимости последовательности функции к пределу функции на основании определения равномерной сходимости функциональной последовательности можно записать:

.

4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:

=

(на основании свойства определенного интеграла).

5) С учетом неравенства пункта 3 можно написать:

.

6) Если правую часть последнего неравенства заменить на , то получим неравенство:

, что равносильно выражению

, но , поэтому

, .

Теорема доказана [14].

Следствие. Пусть функции непрерывны на и функциональный ряд равномерно сходится на указанном отрезке, тогда функциональный ряд вида будет равномерно ходиться на отрезке к или к , т.е. справедлива

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Классификация, виды и типы средств наглядности при обучении истории
При словесном описании на уроках истории событий и явлений прошлого в подавляющем числе случаев не имеется возможности опереться на непосредственное наблюдение учащимися предметов описания или повествования потому, что это явление уже прошедшее, недоступное живому, непосредственному восприятию обуч ...

Игры, способствующие пониманию и формированию грамматических конструкций
Своевременное формирование грамматического строя языка ребенка является важнейшим условием его полноценного речевого и общего психического развития, поскольку язык и речь выполняют ведущую функцию в развитии мышления и речевого общения, в планировании и организации деятельности ребенка, самоорганиз ...

Особенности социальной работы в образовательном учреждении
Проблема развития социальной педагогики в России очень актуальна. Официально профессия "социальный педагог" появилась в нашей стране лишь около десяти лет назад. Социальный педагог - призван объединять усилия семьи, школы, общественности, для оказания помощи ребенку. Социальная педагогика ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru