.
С учетом записанного равенства, равенство пункта 5 примет вид:
.
Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые:
.
Теорема доказана [14].
§9. Почленное интегрирование функциональных рядов
Теорема 6. Если последовательность непрерывных на
функций
сходится равномерно на указанном отрезке к предельной функции
, то
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива следующая формула:
.
1) Так как по условию теоремы последовательность функций
равномерно сходится к пределу функции
на
т.е.
, то
функция
будет непрерывна на
на основании теоремы 5.
2) Известна теорема, что если функция непрерывна на
, то она интегрируема на указанном отрезке, т.е. существует определенный интеграл
,
3) В силу равномерной сходимости последовательности функции
к пределу функции
на основании определения равномерной сходимости функциональной последовательности можно записать:
.
4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:
=
(на основании свойства определенного интеграла).
5) С учетом неравенства пункта 3 можно написать:
.
6) Если правую часть последнего неравенства заменить на
, то получим неравенство:
, что равносильно выражению
, но
, поэтому
,
.
Теорема доказана [14].
Следствие. Пусть функции
непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке, тогда
функциональный ряд вида
будет равномерно ходиться на отрезке
к
или к
, т.е. справедлива
Образование, педагогика, воспитание:
Выявление интереса у детей подготовительной к школе группы к играм с
элементами спорта
Констатирующий этап проводился с 11.09.10 по 12.10.12. Цель: выявить уровень развития быстроты у детей подготовительной к школе группы, уровень физической подготовленности игры в хоккей, выявить интерес у детей данной группы к играм с элементами спорта, выявить место хоккея в работе с детьми седьмо ...
Семейная психолого-педагогическая культура как основавзаимодействия
социального педагога и семьи
Жизнь семьи характеризуется материальными и духовными процессами, которые исторически обусловливаются системой общественных отношений, национальными обычаями, традициями, культурой, в конечном итоге её укладом. Развитие личности ребёнка в семье в решающей степени происходит под воздействием семейно ...
Психолингвистические требования к методике обучения
английскому языку как второму иностранному
Введение второго иностранного языка в школе означает, что образование становится многоязычным: родной язык, первый иностранный, второй иностранный образуют уникальное лингвистическое явление - триглоссию. Вместе с тем, поскольку обучение любому языку неразрывно связано с культурой страны изучаемого ...