Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 3

.

С учетом записанного равенства, равенство пункта 5 примет вид:

.

Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые: .

Теорема доказана [14].

§9. Почленное интегрирование функциональных рядов

Теорема 6. Если последовательность непрерывных на функций сходится равномерно на указанном отрезке к предельной функции , то последовательность определенных интегралов с переменным верхним пределом будет сходиться равномерно на к определенному интегралу , причем будет справедлива следующая формула:

.

1) Так как по условию теоремы последовательность функций равномерно сходится к пределу функции на т.е. , то

функция будет непрерывна на на основании теоремы 5.

2) Известна теорема, что если функция непрерывна на , то она интегрируема на указанном отрезке, т.е. существует определенный интеграл

,

3) В силу равномерной сходимости последовательности функции к пределу функции на основании определения равномерной сходимости функциональной последовательности можно записать:

.

4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:

=

(на основании свойства определенного интеграла).

5) С учетом неравенства пункта 3 можно написать:

.

6) Если правую часть последнего неравенства заменить на , то получим неравенство:

, что равносильно выражению

, но , поэтому

, .

Теорема доказана [14].

Следствие. Пусть функции непрерывны на и функциональный ряд равномерно сходится на указанном отрезке, тогда функциональный ряд вида будет равномерно ходиться на отрезке к или к , т.е. справедлива

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Коррекция психофизических недостатков умственно отсталых младших школьников средствами физических упражнений
Учитывая состояние диагностики состояния физического развития умственно отсталых младших школьников мы проводили уроки ритмики в течение третьей четверти 2000/2001 учебного года, используя упражнения, предложенные Е.С. Черником ( ), музыкально-двигательные упражнения Е.П. Раевской ( ), занятия ритм ...

Игры, формирующие правильное звукопроизношение
Общение ребенка со взрослыми и сверстниками наиболее успешно осуществляется тогда, когда говорящий внятно и чисто произносит слова. Нечеткое или неправильное произношение слов может быть причиной их непонимания. Неправильное произношение отдельных групп звуков в младшем дошкольном возрасте вполне з ...

Задачи и содержание обучения связной речи
Программа детского сада, предусматривает обучение диалогической и монологической речи. Работа по развитию диалогической речи направлена на формирование умений, необходимых для общения. Диалог – сложная форма социального взаимодействия. Участвовать в диалоге иногда бывает труднее, чем строить моноло ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru