Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 3

.

С учетом записанного равенства, равенство пункта 5 примет вид:

.

Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые: . Ритмика для детей у перово.

Теорема доказана [14].

§9. Почленное интегрирование функциональных рядов

Теорема 6. Если последовательность непрерывных на функций сходится равномерно на указанном отрезке к предельной функции , то последовательность определенных интегралов с переменным верхним пределом будет сходиться равномерно на к определенному интегралу , причем будет справедлива следующая формула:

.

1) Так как по условию теоремы последовательность функций равномерно сходится к пределу функции на т.е. , то

функция будет непрерывна на на основании теоремы 5.

2) Известна теорема, что если функция непрерывна на , то она интегрируема на указанном отрезке, т.е. существует определенный интеграл

,

3) В силу равномерной сходимости последовательности функции к пределу функции на основании определения равномерной сходимости функциональной последовательности можно записать:

.

4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:

=

(на основании свойства определенного интеграла).

5) С учетом неравенства пункта 3 можно написать:

.

6) Если правую часть последнего неравенства заменить на , то получим неравенство:

, что равносильно выражению

, но , поэтому

, .

Теорема доказана [14].

Следствие. Пусть функции непрерывны на и функциональный ряд равномерно сходится на указанном отрезке, тогда функциональный ряд вида будет равномерно ходиться на отрезке к или к , т.е. справедлива

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Понятие и структура имиджа современного учителя
Термин "имидж" широко трактуется, но надо отметить, что до сих пор нет однозначного его толкования. Так физический имидж – это здоровье, стиль одежды, прически и макияжа. Психологический имидж - характер, темперамент, внутренний мир. Социальный имидж - роль в обществе, поведение и коммуни ...

Констатирующий эксперимент по выявлению уровня сформированности географических представлений у дошкольников
Исследование начато в декабре 2004 года на базе подготовительной группы ДОУ № 2 г. Осинники, использующего в экологическом воспитании дошкольников программы "Юный эколог" С.Н.Николаеваой, и раздел "Ребенок открывает для себя мир природы" программы "Детство". В программ ...

Методикаформирования представлений о домашних животных у детей раннего возрастасредствами дидактической игры
Провели диагностику предложенную Е.В. Гончаровой и Л.В. Моисеевой. В процессе индивидуальных бесед малышам демонстрировались дидактические картинки игрушки-модели. Анализируя уровень знаний детей о животных, обращали внимание на следующие критерии: 1. Узнавание и называние животного. 2. Знание особ ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru