.
С учетом записанного равенства, равенство пункта 5 примет вид:
.
Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые:
.
Теорема доказана [14].
§9. Почленное интегрирование функциональных рядов
Теорема 6. Если последовательность непрерывных на
функций
сходится равномерно на указанном отрезке к предельной функции
, то
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива следующая формула:
.
1) Так как по условию теоремы последовательность функций
равномерно сходится к пределу функции
на
т.е.
, то
функция
будет непрерывна на
на основании теоремы 5.
2) Известна теорема, что если функция непрерывна на
, то она интегрируема на указанном отрезке, т.е. существует определенный интеграл
,
3) В силу равномерной сходимости последовательности функции
к пределу функции
на основании определения равномерной сходимости функциональной последовательности можно записать:
.
4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:
=
(на основании свойства определенного интеграла).
5) С учетом неравенства пункта 3 можно написать:
.
6) Если правую часть последнего неравенства заменить на
, то получим неравенство:
, что равносильно выражению
, но
, поэтому
,
.
Теорема доказана [14].
Следствие. Пусть функции
непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке, тогда
функциональный ряд вида
будет равномерно ходиться на отрезке
к
или к
, т.е. справедлива
Образование, педагогика, воспитание:
Изучение особенностей развития некоторых сторон позновательной деятельности
детей с недостатками слуха дошкольного и младшего школьного возраста
Теоретические положения Л. С. Выготского о сложной структуре аномального развития ребенка, разграничении первичных и вторичных нарушений в психическом развитии способствовали нового подхода к рассмотрению особенностей позновательной деятельности детей с недостатками слуха ( Р.М.Боскис, Т.А.Власова, ...
Формы, методы и средства формирования межкультурной компетенции на уроках
английского языка
Процесс формирования межкультурной компетенции эффективен только тогда, когда учащиеся одновременно осмысливают и сопоставляют полученные знания о родной и иноязычной культуре, и в состоянии связать собственный опыт с чужим. Опыт межкультурной деятельности и общения между учащимися, представляющими ...
Технологии преподавания происхождения сущности государства и права в современной
школе
Динамичность общественной жизни диктует потребность в изменениях даже, казалось бы, универсальных форм обучения. Например, с течением определенного времени специалисты, анализирующие опыт преподавания происхождения сущности права и государства в современной школе, пришли к выводу о недопустимости о ...