.
С учетом записанного равенства, равенство пункта 5 примет вид:
.
Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые: .
Теорема доказана [14].
§9. Почленное интегрирование функциональных рядов
Теорема 6. Если последовательность непрерывных на функций
сходится равномерно на указанном отрезке к предельной функции
, то
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива следующая формула:
.
1) Так как по условию теоремы последовательность функций равномерно сходится к пределу функции
на
т.е.
, то
функция будет непрерывна на
на основании теоремы 5.
2) Известна теорема, что если функция непрерывна на , то она интегрируема на указанном отрезке, т.е. существует определенный интеграл
,
3) В силу равномерной сходимости последовательности функции к пределу функции
на основании определения равномерной сходимости функциональной последовательности можно записать:
.
4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:
=
(на основании свойства определенного интеграла).
5) С учетом неравенства пункта 3 можно написать:
.
6) Если правую часть последнего неравенства заменить на , то получим неравенство:
, что равносильно выражению
, но
, поэтому
,
.
Теорема доказана [14].
Следствие. Пусть функции непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке, тогда
функциональный ряд вида
будет равномерно ходиться на отрезке
к
или к
, т.е. справедлива
Образование, педагогика, воспитание:
Современные психологические подходы в исследовании ИС
Психологами давно отмечались индивидуальные особенности в способах осуществления познавательных процессов и поведенческих актов. Такие различия рассматриваются в качестве оснований для более или менее развернутых классификаций типов людей. Развивая представления И.П. Павлова о типах нервной системы ...
Методические рекомендации по введению жанров богослужебных и духовных
песнопений в курсы музыкально-теоретических дисциплин
Начавшееся в конце ХХ века возрождение звучания сочинений, созданных для церкви, в настоящее время стало ярким фактором современной культурной жизни. А восстановление прежнего социального статуса церкви привлекло к ней нового поколение людей. В этой связи становится очень важным формирование у моло ...
Определение креативности и исследование кретаивности в психологии
Креативность (от лат. creatio — созидание) — творческие возможности (способности) человека, которые могут проявляться в мышлении, чувствах, общении, отдельных видах деятельности, характеризовать личность в целом и/или ее отдельные стороны, продукты деятельности, процесс их создания. Креативность ра ...