.
С учетом записанного равенства, равенство пункта 5 примет вид:
.
Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые:
.
Теорема доказана [14].
§9. Почленное интегрирование функциональных рядов
Теорема 6. Если последовательность непрерывных на
функций
сходится равномерно на указанном отрезке к предельной функции
, то
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива следующая формула:
.
1) Так как по условию теоремы последовательность функций
равномерно сходится к пределу функции
на
т.е.
, то
функция
будет непрерывна на
на основании теоремы 5.
2) Известна теорема, что если функция непрерывна на
, то она интегрируема на указанном отрезке, т.е. существует определенный интеграл
,
3) В силу равномерной сходимости последовательности функции
к пределу функции
на основании определения равномерной сходимости функциональной последовательности можно записать:
.
4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:
=
(на основании свойства определенного интеграла).
5) С учетом неравенства пункта 3 можно написать:
.
6) Если правую часть последнего неравенства заменить на
, то получим неравенство:
, что равносильно выражению
, но
, поэтому
,
.
Теорема доказана [14].
Следствие. Пусть функции
непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке, тогда
функциональный ряд вида
будет равномерно ходиться на отрезке
к
или к
, т.е. справедлива
Образование, педагогика, воспитание:
Анализ учебников с точки зрения вероятностно – стохастической линии
Как показал анализ анкет, в школе №27 вероятностно-стохастическая линия включена в учебные планы учителей математики, но при прохождении нами педагогической практики (5 курс) в школе №14 выяснилось, что данная тема не рассматривалась учителем до 11 класса, хотя профиль класса социально-экономически ...
Методы научного исследования
Обязательным этапом исследования является выбор методов исследования, которые зависят от особенностей решаемых задач, специфики содержания проблем и возможностей исследования. Метод-путь познания; способ построения и обоснования научного знания; способ посредством которого показывается предмет наук ...
Понятие предметно-развивающий среды и ее влияние на развитие игры-драматизации
в старшем дошкольном возрасте
Проблема среды рассматривалась в трудах М.Я. Басова, П.П. Блонского, А.Б. Залкина и других. Уже в 1927 году ставится вопрос о роли среды в процессе развития ребенка на первом педагогическом съезде, где были сделаны следующие выводы: Среда является лишь фактором, содействующим процессу развертывания ...