.
С учетом записанного равенства, равенство пункта 5 примет вид:
.
Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые: .
Теорема доказана [14].
§9. Почленное интегрирование функциональных рядов
Теорема 6. Если последовательность непрерывных на функций
сходится равномерно на указанном отрезке к предельной функции
, то
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива следующая формула:
.
1) Так как по условию теоремы последовательность функций равномерно сходится к пределу функции
на
т.е.
, то
функция будет непрерывна на
на основании теоремы 5.
2) Известна теорема, что если функция непрерывна на , то она интегрируема на указанном отрезке, т.е. существует определенный интеграл
,
3) В силу равномерной сходимости последовательности функции к пределу функции
на основании определения равномерной сходимости функциональной последовательности можно записать:
.
4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:
=
(на основании свойства определенного интеграла).
5) С учетом неравенства пункта 3 можно написать:
.
6) Если правую часть последнего неравенства заменить на , то получим неравенство:
, что равносильно выражению
, но
, поэтому
,
.
Теорема доказана [14].
Следствие. Пусть функции непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке, тогда
функциональный ряд вида
будет равномерно ходиться на отрезке
к
или к
, т.е. справедлива
Образование, педагогика, воспитание:
Физическая подготовка детей к школе
Для успешного обучения в школе ребенку необходима не только умственная, нравственно-волевая подготовка, но и прежде всего физическая. Меняющийся уклад жизни, нарушение старых привычек, возрастание умственных нагрузок, установление новых взаимоотношений с учителем и сверстниками – факторы значительн ...
Условия формирования семейного физического воспитания
Правильно организованное физическое воспитание в семье, выступая как условие и фундамент психофизического благополучия ребенка, в свою очередь зависит от ряда объективных и субъективных условий. В науке и практике физического воспитания выделены условия, обязательное соблюдение которых обеспечивает ...
Основные периоды психического развития ребенка
В истории детской психологии можно отметить немало попыток создать возрастную периодизацию психического развития ребенка. Оригинальное понимание этой проблемы было разработано в свое время Л.С. Выготским. Во-первых, он справедливо полагал, что периодизацию психического развития необходимо проводить ...