Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 3

.

С учетом записанного равенства, равенство пункта 5 примет вид:

.

Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые: .

Теорема доказана [14].

§9. Почленное интегрирование функциональных рядов

Теорема 6. Если последовательность непрерывных на функций сходится равномерно на указанном отрезке к предельной функции , то последовательность определенных интегралов с переменным верхним пределом будет сходиться равномерно на к определенному интегралу , причем будет справедлива следующая формула:

.

1) Так как по условию теоремы последовательность функций равномерно сходится к пределу функции на т.е. , то

функция будет непрерывна на на основании теоремы 5.

2) Известна теорема, что если функция непрерывна на , то она интегрируема на указанном отрезке, т.е. существует определенный интеграл

,

3) В силу равномерной сходимости последовательности функции к пределу функции на основании определения равномерной сходимости функциональной последовательности можно записать:

.

4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:

=

(на основании свойства определенного интеграла).

5) С учетом неравенства пункта 3 можно написать:

.

6) Если правую часть последнего неравенства заменить на , то получим неравенство:

, что равносильно выражению

, но , поэтому

, .

Теорема доказана [14].

Следствие. Пусть функции непрерывны на и функциональный ряд равномерно сходится на указанном отрезке, тогда функциональный ряд вида будет равномерно ходиться на отрезке к или к , т.е. справедлива

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Учебно-методический комплекс по русскому языку авторов Л.М. Зелениной и Т.Е. Хохловой
Нами был проанализирован еще один учебно-методический комплекс по русскому языку авторов Л.М. Зелениной и Т.Е. Хохловой. Этот курс построен на познавательной активности и самостоятельности учащихся. Младшие школьники в ходе обучения открывают для себя родной язык как предмет изучения, предмет анали ...

Цели и формы музыкального образования в европейской истории образования
Музыкальное образование — процесс и результат усвоения систематизированных знаний, умений и навыков, необходимых для музыкальной деятельности. Под музыкальным образованием понимают также систему организации музыкального обучения в музыкальных учебных заведениях. Важную роль может играть и самообраз ...

История становления и развития музыки православной церкви на Украине и в России
Вопросам истории церковного пения в России и на Украине посвящён ряд работ, созданных в большинстве своём в XIX , начале ХХ веков. Это исследования Д. Аллеманова, В. Металлова, А. Преображенского, Д. Разумовского, Н. Финдейзена. Во второй половине ХХ века эта сфера музыкальной культуры рассматривал ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru