.
С учетом записанного равенства, равенство пункта 5 примет вид:
.
Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые: .
Теорема доказана [14].
§9. Почленное интегрирование функциональных рядов
Теорема 6. Если последовательность непрерывных на функций
сходится равномерно на указанном отрезке к предельной функции
, то
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива следующая формула:
.
1) Так как по условию теоремы последовательность функций равномерно сходится к пределу функции
на
т.е.
, то
функция будет непрерывна на
на основании теоремы 5.
2) Известна теорема, что если функция непрерывна на , то она интегрируема на указанном отрезке, т.е. существует определенный интеграл
,
3) В силу равномерной сходимости последовательности функции к пределу функции
на основании определения равномерной сходимости функциональной последовательности можно записать:
.
4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:
=
(на основании свойства определенного интеграла).
5) С учетом неравенства пункта 3 можно написать:
.
6) Если правую часть последнего неравенства заменить на , то получим неравенство:
, что равносильно выражению
, но
, поэтому
,
.
Теорема доказана [14].
Следствие. Пусть функции непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке, тогда
функциональный ряд вида
будет равномерно ходиться на отрезке
к
или к
, т.е. справедлива
Образование, педагогика, воспитание:
Психологические и психофизиологические особенности
младших школьников
Тенденции развития психологических свойств такова: от большей слабости и инертности нервной системы в раннем возрасте к увеличению ее выносливости и подвижности по мере взросления. Это означает, что младшие школьники, особенно первоклассники, быстро достигают предела работоспособности, в очень мало ...
Организация внеклассной работы
Общее руководство работой коллектива физической культуры возлагается на учителя физической культуры, а руководство кружком — на одного из учителей начальных классов. В кружок и коллектив физической культуры учащиеся вступают добровольно, для этого достаточно устного заявления. На общем собрании чле ...
Понятие и структура межкультурной компетенции
Глобализация – это процесс возрастающего воздействия различных факторов международного значения (например, тесных экономических и политических связей, культурного и информационного обмена) на социальную действительность в отдельных странах. Суть глобализации заключается в расширении взаимосвязей и ...