формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Взаимосвязь процессов функционирования и развития в Омской области с
элементами содержания общего образования
Регионально-национальный компонент содержания общего образования предопределяется содержанием понятия «регион». Регион – это территория, объединенная общим признаком, отличающим данную территорию от соседних территорий. Исходя из этого определения, очевидно, что в зависимости от выявленных признако ...
Определения равномерно сходящихся функциональных последовательностей
и рядов
Опр.5. Последовательность функций равномерно сходится на множестве Х к предельной функции , если . Опр.6. Функциональная последовательность называется равномерно сходящейся на множестве X, если существует функция , в которой она равномерно сходится на множестве X. Обозначение: . Геометрический смыс ...
Технология педагогических мастерских
Существующая система образования в значительной степени построена на передаче знаний от учителя к ученику, на пассивной позиции обучающегося, что не позволяет личности самой строить свое знание, активно и творчески пользоваться им в жизни как свои приобретением. Этот подход к образованию не раскрыв ...