формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Сравнительный анализ программ учебно-воспитательного процесса в дошкольных
образовательных учреждениях
Разработанная в России стратегия построения государственных образовательных стандартов соответствует Международной конвенции о правах ребенка, опирается на положение Закона РФ "Об образовании". В отличие от школьных государственных образовательных стандартов, которые определяют: обязатель ...
Характеристика педагогических факторов эксперимента
Сопутствующими (или побочными) факторами называются все те, которые должны быть уравнены, чтобы создать доказательность действия причинного экспериментального фактора. Следует помнить, что они могут оказывать существенное влияние на результаты учебно-воспитательного процесса. Именно поэтому они дол ...
Роль устной речи в жизнедеятельности человека
Лингвистика рассматривает такое явление как язык в двух аспектах — язык и речь. При рассмотрении языка имеется ввиду определенная система, которая находится вне человека и осуществляется независимо от него. Говоря о речи, имеется ввиду речевая деятельность. С точки зрения психологии (А.А. Леонтьев, ...