формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Характеристика типичных нарушений графомоторных навыков
у детей с нарушениями интеллекта и причин их возникновения
Низкая способность к анализу и синтезу визуально поступающей информации, сниженная дифференцированность зрительного восприятия и анализа, неумением подчинить восприятие поставленной задаче, низкий уровень осмысления наглядно и на слух воспринимаемого материала осложняют у младших школьников с наруш ...
Организация двигательной активности дошкольников
Двигательная активность является важнейшим компонентом образа жизни и поведения дошкольников. Она зависит от организации физического воспитания детей, от уровня их двигательной подготовленности, от условий жизни, индивидуальных особенностей, телосложения и функциональных возможностей растущего орга ...
Проведение исследовательского эксперимента
На примере приведенной выше работы над проектом, был проведен исследовательский эксперимент в одном из 3-их классов гимназии №9 города Красноярска. В организованной работе над проектом участвовало 17 человек. В данном учебном заведении программой предусмотрено изучение информатики в начальной школе ...