формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Содержание деятельности социального педагога в специальной образовательной
школе – интернат VIII вида
Дети школьного возраста, имеющие особые образовательные потребности, получают образование в соответствии со специальными стандартами в различных образовательных учреждениях или на дому. В течение XX в. складывалась система специальных (коррекционных) образовательных учреждений, которые являются пре ...
Цель и задачи констатирующего эксперимента. Характеристика детей,
участвующих в экспериментальном исследовании
Целью констатирующего эксперимента явилось выявление нарушений формирования фонетико-фонетических процессов у дошкольников старшего возраста с фонетико-фонематическим недоразвитием речи. Для достижения поставленной цели мы поставили перед собой следующие задачи: 1. Подобрать методические рекомендац ...
Физическое воспитание – одна из важных сторон гармоничного развития
личности ребенка дошкольного возраста
В качестве одного из видов воспитания физическое воспитание представляет собой воспитательно-образовательный процесс, характеризующийся всеми присущими педагогическому процессу общими признаками (ведущая роль педагога специалиста, направленность деятельности воспитателя и воспитуемых на реализацию ...