формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Основные цели, принципы, направления и содержание организации
взаимодействия социального педагога и семьи
Профессия социального педагога представляет собой одну из разновидностей профессий, относящихся к сфере социальной работы. Под социальной работой понимается «область деятельности общества, связанная с созданием условий и оказанием помощи населению в целях максимально эффективного осуществления проц ...
Дидактические
возможности компьютерной инструментальной среды ЛогоМиры
«Лого – инструмент для познания и развития собственного мышления, и в этом отличие этой среды от систем программирования, ориентированных в первую очередь на обеспечение наиболее эффективного использования аппаратуры». Программная среда Лого (ЛогоМиры) была разработана и реализована под руководство ...
Этапы формирования грамматического строя речи у детей. Основные трудности и
ошибки
Усвоение речи ребенком - это сложный процесс, который в своем развитии проходит ряд стадий: от зачаточного, аморфного использования отдельных языковых явлений до полного овладения языковыми нормами. Первой стадией в усвоении речи является развитие у ребенка понимания обращенной речи (пассивная речь ...