формула: .
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но представляет собой частичную сумму такого ряда:
.
4) А является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Задачи и содержание обучения связной речи
Программа детского сада, предусматривает обучение диалогической и монологической речи. Работа по развитию диалогической речи направлена на формирование умений, необходимых для общения. Диалог – сложная форма социального взаимодействия. Участвовать в диалоге иногда бывает труднее, чем строить моноло ...
Создание положительного эмоционального фона на уроке
Эмоциональный фон является важным фактором урока. Он возникает с момента ожидания учащимися урока физической культуры и существует на всем его протяжении. При этом эмоциональный настрой может изменяться по ходу урока в зависимости от самочувствия учащихся, проявляемого ими интереса к упражнению, в ...
Экспериментальное определение уровня физического
развития и особенностей двигательного анализатора учащихся с нарушением
интеллекта
Анализ теоретических источников по изучаемой нами проблеме навел нас на мысль о том, что процесс физической подготовки умственно отсталых детей следует начинать с обследования здоровья, физического развития и двигательной сферы. Учащиеся школы VIII вида, как правило, отстают от нормальных школьнико ...