формула: .
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но представляет собой частичную сумму такого ряда:
.
4) А является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Определение дидактики. Задачи и основы дидактики
В современном, полном контрастов и противоречий мире происходят значительные изменения и преобразования, которые отражаются на всех сферах человеческой жизни. Цивилизация стоит перед выбором направленности своего дальнейшего пути развития в условиях многочисленных катастроф и катаклизмов как природ ...
Реализация технологии физического воспитания в работе с детьми 5–6 лет с
задержкой психического развития
В РФ действуют специальные образовательные учреждения I-VШ видов. Для обучения и воспитания детей с ЗПР организуются учреждения VII вида: детский сад компенсирующего вида с приоритетным осуществлением квалифицированной коррекции в физическом и психическом развитии воспитанников; детский сад комбини ...
Содержание обучения английскому языку как второму иностранному
Проблема родного языка неизменно возникает всякий раз при разработке методов обучения иностранному языку. Сложность этой проблемы нашла свое отражение в таких методических принципах обучения, как опора на родной язык, его учет или исключение из учебного процесса. Все речевые механизмы учащихся сфор ...