формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Дидактико-методические основы обучения иноязычному чтению в условиях
общеобразовательных школ
Прежде всего отметим, что содержание обучения иноязычному самостоятельному чтению должно отличаться мотивационно-побудительной направленностью, информативностью, высокой образовательной ценностью, аутентичностью, информационной и языковой доступностью. Воспитательно-образовательно-развивающий эффек ...
Содержание элективных курсов по математике
Содержание элективных курсов определено программой, разработанной учителем и предусматривает изучение разделов: «Избранные вопросы математики», «Математика в приложениях» и др. К программе прилагается список литературы, рекомендованный для изучения темы элективного курса, а также примерное содержан ...
Роль словесного ударения
Данная методика и приемы работы взяты из разработок К.А. Волковой, Ф.Ф. Рау, Н.Ф. Слезиной. Словесное ударение является одним из трех элементов фонетической системы русского языка. Оно вместе с числом слогов, является носителем его ритма. Благодаря ударению осуществляется выделение слов в речи, а т ...