формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Психологическая сущность мышления и его особенности
Мышление как феномен, обеспечивающий родовую особенность человека, в структуре психики человека относится к психическим познавательным процессам, которые обеспечивают первичное отражение и осознание людьми воздействий окружающей действительности. Традиционные в психологической науке определения мыш ...
Здоровьесберегающие технологии в современной образовательной среде
Перед тем как рассмотреть здоровьесберегающие технологии, обратимся к понятию «здоровьесберегающее образование». Это образование, не вызывающее у субъектов образования (обучаемых и обучающих) специфических заболеваний, которые называются дидактогенией, выгоранием личности учителя, полураспадом за о ...
Дидактико-методические основы обучения иноязычному чтению в условиях
общеобразовательных школ
Прежде всего отметим, что содержание обучения иноязычному самостоятельному чтению должно отличаться мотивационно-побудительной направленностью, информативностью, высокой образовательной ценностью, аутентичностью, информационной и языковой доступностью. Воспитательно-образовательно-развивающий эффек ...