формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Формы и методы обучения информатике в начальной школе
Основной формой организации учебно-воспитательной работы с учащимися по всем предметам в начальной школе является урок. Школьный урок образует основу классно-урочной системы обучения, характерными признаками которой являются: · Постоянный состав учебных групп учащихся. · Определённое расписание уче ...
Формирование интереса у младшего школьников на интегрированных уроках изобразительного
искусства
Использование различных видов работы на интегрированных уроков поддерживает внимание учеников на высоком уровне, что позволяет говорить о развивающей эффективности таких уроков. Это могут быть уроки изобразительного искусства с привлечением учебного материала смежных предметов а так же проведение, ...
Методика формирования синтаксического строя речи
В рамках констатирующего эксперимента выявляется уровень синтаксического строя речи учащихся, анализируются грамматические и речевые ошибки, определяется значение синтаксических конструкций различных функционально-стилистических рядов в читательской деятельности. Анализ письменной речи учащихся опи ...