формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Технология педагогического взаимодействия как условие эффективной
педагогической деятельности
Педагогическое общение – специфическая форма общения, имеющая свои особенности и в то же время подчиняющаяся общим психологическим закономерностям, присущим общению как форме взаимодействия человека с другими людьми, включающей коммуникативный, интерактивный и перцептивный компоненты. Педагогическо ...
Формирование репродуктивных и рецептивных грамматических
навыков
Разный характер действий, лежащих в основе рецептивной и репродуктивной деятельности ставит на первое место задачу развития продуктивных и рецептивных грамматических навыков и умений, выработку грамматических механизмов речи. Поэтому упражнения занимают центральное место при обучении иностранному я ...
Роль семьи в полоролевой социализации дошкольников
До сих пор ученые полемизируют: какое понятие шире - полоролевое или половое воспитание. Одни считают полоролевое воспитание составной частью полового, другие убеждены в том, что оно (полоролевое) - более широкая область воспитания по сравнению с сексуальным. Но те и другие едины во мнении: психосе ...