формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Развитие творческих способностей учащихся средствами графики
Художественное образование в целом и занятия графикой в частности призвано развивать эстетический и познавательный потенциал личности, стимулировать формирование эстетического сознания как основы культуры личности и основы эстетической деятельности, помогает подросткам самостоятельно освоить культу ...
Роль паузального членения
фраз
Правильное членение речи с помощью пауз служит одним из существенных факторов, способствующих внятности речи глухих детей. В то же время умение расчленять речь паузами на фразы, а фразы на синтагмы помогают глухим понимать речь окружающих и читаемый текст. Вместе с тем наблюдение показывает, что уч ...
Игры, способствующие развитию доброжелательного микроклимата в группе
Цель этих игр: Учить детей находить, показывать и, по-возможности, произносить имена сверстников и сотрудников группы, воспитывать дружелюбие и желание играть друг с другом. Развивать общительность и хорошие взаимоотношения с окружающими людьми. Вызвать положительные эмоции. Покажи, кого назову Ход ...