формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Понятие мышления
В процессе ощущения и восприятия человек познает окружающий мир в результате непосредственного, чувственного его отражения. Однако внутренние закономерности, сущность вещей не могут отразиться в нашем сознании непосредственно. Ни одна закономерность не может быть воспринята непосредственно органами ...
Особенности формирования экологических представлений у детей раннего
возраста
Учитывая психологические особенности детей раннего возраста и то, что дети только начали посещать детский сад, основным содержанием первого года обучения должны быть наблюдения и практические действия с объектами природы совместно с педагогом. О чем должен помнить педагог.У детей раннего возраста н ...
Инновационные процессы в России в конце 20 – начале
21 вв
Современные инновационные процессы в российском образовании обусловлены противоречиями, обострившимися на рубеже 70–80-х годов ХХ в., когда в отечественной школе с очевидностью стали проявляться признаки кризиса и застоя. Эти признаки обнаруживались в спаде интересов школьников к учебе, в упадке шк ...