формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Использование ТСО на лекционных занятиях
Среди разнообразных методов и средств совершенствования процесса обучения в высшей школе, а также интенсификации и повышения эффективности учебной деятельности важное место отводится использованию технических средств обучения (ТСО). ТСО - это совокупность технических устройств и дидактических матер ...
Отбор грамматического материала для обучения устной речи и
чтению
Сущность отбора грамматического материала для школы заключается в создании такого грамматического минимума, который был бы посилен для усвоения и достаточен для выполнения коммуникативно-значимых задач обучения. При решении вопроса об отборе грамматического минимума учитываются источники и принципы ...
Организация двигательной активности дошкольников
Двигательная активность является важнейшим компонентом образа жизни и поведения дошкольников. Она зависит от организации физического воспитания детей, от уровня их двигательной подготовленности, от условий жизни, индивидуальных особенностей, телосложения и функциональных возможностей растущего орга ...