формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Игры, развивающие речевое дыхание
Хорошо поставленное речевое дыхание обеспечивает правильное произношение звуков, слов и фраз. Для того чтобы научиться выговаривать многие звуки, ребенок должен делать достаточно сильный вдох через рот. Ниже приведены упражнения, в которых ребенку в игровой форме предлагается подуть на различные пр ...
Виды речевой деятельности, их характеристика
В психологии речи можно выделить следующие виды речевой деятельности: внутреннюю и внешнюю. Внешняя речь включает речь устную (диалогическую и монологическую) и письменную. Рассмотрим данные виды речевой деятельности подробнее. Речь внутренняя – различные виды использования языка (точнее, языковых ...
Основные направления логопедической работы по формированию фонематического
восприятия у дошкольников с ФФН
Преодоление фонетико-фонематического недоразвития достигается путем целенаправленной логопедической работы по коррекции звуковой стороны речи и фонематического недоразвития. «Система обучения и воспитания детей дошкольного возраста с фонетико-фонематическим недоразвитием включает коррекцию речевого ...