формула: .
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но представляет собой частичную сумму такого ряда:
.
4) А является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Электронное
пособие по теме “Функциональные последовательности и ряды"
В процессе выполнения данной выпускной квалификационной работы было создано электронное пособие по теме "Функциональные последовательности и ряды". Обучающая часть пособия представлена в формате HTML, а контролирующая - на языке DELFI. При создании обучающей программы пособия (совокупност ...
Ценность младшего школьного возраста
Глубокие изменения, происходящие в психологическом облике младшего школьника, свидетельствуют о широких возможностях развития ребенка на данном возрастном этапе. В течение этого периода на качественно новом уровне реализуется потенциал развития ребенка как активного субъекта, познающего окружающий ...
Определения функциональной последовательности и функционального ряда
Опр.1. Пусть дана последовательность функций: , причем функции являются функциями одной переменной и определены в некоторой области . Такая последовательность называется функциональной и обозначается: . Пусть для каждого эта последовательность имеет конечный предел. Величина этого предела зависит о ...