Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 4

формула: .

Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.

.

Доказательство

1) Так как по условию следствия функциональный ряд равномерно сходится на , то частичная последовательность его функций будет также равномерно сходиться к предельной функции , т.е. .

Причем и непрерывны в каждой точке отрезка на основании только что доказанной теоремы:

.

3) Но представляет собой частичную сумму такого ряда: .

4) А является суммой ряда .

На основании доказанной теоремы можно записать:

5) Последнее равенство можно переписать следующим образом:

.

Теорема доказана.

Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.

Страницы: 1 2 3 4 

Образование, педагогика, воспитание:

Развитие творческих способностей учащихся средствами графики
Художественное образование в целом и занятия графикой в частности призвано развивать эстетический и познавательный потенциал личности, стимулировать формирование эстетического сознания как основы культуры личности и основы эстетической деятельности, помогает подросткам самостоятельно освоить культу ...

Роль паузального членения фраз
Правильное членение речи с помощью пауз служит одним из существенных факторов, способствующих внятности речи глухих детей. В то же время умение расчленять речь паузами на фразы, а фразы на синтагмы помогают глухим понимать речь окружающих и читаемый текст. Вместе с тем наблюдение показывает, что уч ...

Игры, способствующие развитию доброжелательного микроклимата в группе
Цель этих игр: Учить детей находить, показывать и, по-возможности, произносить имена сверстников и сотрудников группы, воспитывать дружелюбие и желание играть друг с другом. Развивать общительность и хорошие взаимоотношения с окружающими людьми. Вызвать положительные эмоции. Покажи, кого назову Ход ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru