формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Анализ передового педагогического опыта
Мировая педагогическая практика широко использует подвижные игры в процессе совершенствования физических навыков малышей. В Китае, Чехии, Германии, Японии, Финляндии и многих других стран подвижные игры являются одним из основных видов физической активности воспитанников детских садов. В России под ...
Методические рекомендации по проведению лекционных занятий
Курс "Математический анализ" входит в блок дисциплин предметной подготовки и занимает важное место среди них в процессе подготовки будущих педагогов - математиков. Целью курса является научное обоснование тех, относящихся к нему понятий, первое представление о которых дается в школе. Курс ...
Виды и тип сказок
Существует самая разнообразная классификация сказок. По тематике и стилистике сказки можно разделить на несколько групп, но обычно выделяют три большие группы: 1. сказки о животных 2. волшебные сказки 3. бытовые (сатирические) сказки Сказки о животных Маленьких детей, как правило, привлекает мир жи ...