Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 4

формула: .

Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.

.

Доказательство

1) Так как по условию следствия функциональный ряд равномерно сходится на , то частичная последовательность его функций будет также равномерно сходиться к предельной функции , т.е. .

Причем и непрерывны в каждой точке отрезка на основании только что доказанной теоремы:

.

3) Но представляет собой частичную сумму такого ряда: .

4) А является суммой ряда .

На основании доказанной теоремы можно записать:

5) Последнее равенство можно переписать следующим образом:

.

Теорема доказана.

Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.

Страницы: 1 2 3 4 

Образование, педагогика, воспитание:

Знакомство с деятельностью классного руководителя
Направления в работе (выясняются из беседы с классным руководителем) Работа направлена на формирование глубоких и прочных знании, коммуникативную компетентность, развитие инициативы, познавательного интереса к предмету, творческого мышления, самостоятельность обучающихся, умение планировать, прогно ...

Игровые технологии в младшем школьном возрасте
Игровые технологии применяются на уроках как в начальной школе, так и в среднем и старшем звене. Но в нашей работе мы рассмотрим подробно игровые технологии в младшем школьном возрасте. Для младшего школьного возраста характерны яркость и непосредственность восприятия, легкость вхождения в образы. ...

Профессиональная квалификация педагога
Нормативы и сферы деятельности педагога в принципе неизменяемы, а вот его становление — движение от возможного к действительному, начинаясь с предпрофессионального поиска себя, затем профессионального образования и продолжаясь в ходе работы по специальности, — во всех его аспектах индивидуально, т. ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru