формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Типы педагогических задач и их характеристика
По временному признаку принято различать три большие группы педагогических задач - стратегические, тактические и оперативные. Стратегические задачи - это своеобразные "сверхзадачи". Они определяют исходные цели и конечные результаты педагогической деятельности. В реальном педагогическом п ...
Познавательная активность учащихся, как педагогическая категория
Познание изучается рядом научных дисциплин. Эталоны и нормы познания, их соответствие познаваемой реальности, достоверность и недостоверность познания, взаимоотношение познания и иных форм отношения человека к миру (религии, морали, искусства) изучаются в специальном разделе философии – теории позн ...
Механизм речи в концепции Н.И. Жинкина
Н.И. Жинкиным выявлено, что порождение и восприятие речи являются процессами поэтапной реализации внутренней программы, которая управляется речевым механизмом. Вне зависимости от трактовки речи как говорения или как процесса общения посредством говорения и слушания, закономерности функционирования ...