формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Знакомство с деятельностью классного руководителя
Направления в работе (выясняются из беседы с классным руководителем) Работа направлена на формирование глубоких и прочных знании, коммуникативную компетентность, развитие инициативы, познавательного интереса к предмету, творческого мышления, самостоятельность обучающихся, умение планировать, прогно ...
Игровые технологии в младшем школьном возрасте
Игровые технологии применяются на уроках как в начальной школе, так и в среднем и старшем звене. Но в нашей работе мы рассмотрим подробно игровые технологии в младшем школьном возрасте. Для младшего школьного возраста характерны яркость и непосредственность восприятия, легкость вхождения в образы. ...
Профессиональная квалификация педагога
Нормативы и сферы деятельности педагога в принципе неизменяемы, а вот его становление — движение от возможного к действительному, начинаясь с предпрофессионального поиска себя, затем профессионального образования и продолжаясь в ходе работы по специальности, — во всех его аспектах индивидуально, т. ...