формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Структура проблемного урока
Проблемным называется урок, на котором преподаватель целенаправленно создаёт ситуации для поисковой деятельности студентов при приобретении и закреплении новых знаний и способов действий. Особенностью проблемного урока является то, что повторение пройденного материала в большинстве случаев сливаетс ...
Понятие «готовность к школьному обучению»
Готовность дошкольника с нарушенным слухом к школьному обучению является одним из важных итогов его развития в дошкольный период детства. Наступает переломный момент, когда условия жизни и деятельности ребенка резко изменяются, складываются новые отношения со взрослыми и детьми, появляется ответств ...
Задачи и содержание формирования культурно -
гигиенических навыков у младших дошкольников
Большое значение в охране и укреплении здоровья ребёнка имеет гигиеническое воспитание и воспитание культуры поведения. В дошкольном учреждении гигиеническое воспитание детей заключается в рациональном использовании условий внешней среды, сообщения детям элементарных гигиенических сведений и формир ...