Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 4

формула: .

Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.

.

Доказательство

1) Так как по условию следствия функциональный ряд равномерно сходится на , то частичная последовательность его функций будет также равномерно сходиться к предельной функции , т.е. .

Причем и непрерывны в каждой точке отрезка на основании только что доказанной теоремы:

.

3) Но представляет собой частичную сумму такого ряда: .

4) А является суммой ряда .

На основании доказанной теоремы можно записать:

5) Последнее равенство можно переписать следующим образом:

.

Теорема доказана.

Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.

Страницы: 1 2 3 4 

Образование, педагогика, воспитание:

Проблемы социализации детей в педагогике и психологии
Социальная психология понимает социализацию как процесс, обеспечивающий включение в ту или иную социальную группу или общность. Социализация представляет собой развитие человека на протяжении всей его жизни во взаимодействии с окружающей средой, в процессе которого он усваивает социальный опыт и ак ...

Система высшего и послевузовского образования в мире
Учебные цели 1. Знать основные мировые модели высшего и послевузовского образования; 2. Уметь оценивать положительный опыт в подготовке научно-педагогических кадров зарубежных стран применительно к российской высшей школе. Отводимое время – 2 часа План лекции 1. Краткая характеристика систем профес ...

Основные функции и признаки проблемного обучения
Основные функции и отличительные признаки (особенности) проблемного обучения были сформулированы М. И. Махмутовым. Он разделяет их на общие и специальные. Общие функции проблемного обучения: · усвоение учениками системы знаний и способов умственной и практической деятельности; · развитие интеллекта ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru