Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 4

формула: .

Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.

.

Доказательство

1) Так как по условию следствия функциональный ряд равномерно сходится на , то частичная последовательность его функций будет также равномерно сходиться к предельной функции , т.е. .

Причем и непрерывны в каждой точке отрезка на основании только что доказанной теоремы:

.

3) Но представляет собой частичную сумму такого ряда: .

4) А является суммой ряда .

На основании доказанной теоремы можно записать:

5) Последнее равенство можно переписать следующим образом:

.

Теорема доказана.

Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.

Страницы: 1 2 3 4 

Образование, педагогика, воспитание:

Организация учебного процесса и управление образованием
Учебный год в Республике Корея начинается 2 марта. В году выделяются триместры, чётко разграниченные каникулами; каникулы с 20 июня по 25 августа, две недели в конце ноября – начале декабря и весь февраль. В высших учебных заведениях летние каникулы совпадают со школьными, а зимние – с 10 декабря п ...

Особенности адаптации детей к дошкольному учреждению
Дети по-разному переносят трудности, связанные с состоянием эмоционального напряжения при адаптации к условиям детского учреждения. Различают легкую адаптацию, при которой ребенок проявляет имеющееся у него состояние напряжения в виде кратковременного отрицательного эмоционального состояния, у него ...

Диагностика уровней эвристического мышления детей младшего школьного возраста
Для изучения использования эвристической технологии в образовательном процессе нами была проведена опытно-экспериментальная работа, которая состояла на базе МОУ СОШ №2 города Ишима и проводилась в три этапа: На первом - констатирующем - этапе определялся исходный уровень развития эвристического мыш ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru