формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Историко-педагогические идеи в области
национального образования
В основе национального образования лежит позитивное восприятие своего исторического прошлого, раскрытие глубинных смыслов общественного бытия через осмысление собственных национальных корней и возрождение лучших народных традиций. Именно национальное образование, представляющее собой концентрат цен ...
Методологические основы эмпирического исследования специфики
профессионального взаимодействия социального педагога с семьей
Исследование проводилось в период с октября 2009г. по апрель 2010 г. на базе социально-реабилитационного центра для несовершеннолетних г. Курска. В исследовании приняло участие 23 семьи (общее количество человек 69 человек). В исследовании использовались следующие методики. 1. Методика диагностики ...
Структура и классификация современного урока истории
Под структурой урока понимается сочетание определенных звеньев процесса обучения, обусловленное дидактической целью занятия и реализованное в конкретном типе урока. Структурные компоненты урока охарактеризованы ниже в порядке их использования в учебном процессе: 1. Организационный момент складывает ...