Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 4

формула: .

Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.

.

Доказательство

1) Так как по условию следствия функциональный ряд равномерно сходится на , то частичная последовательность его функций будет также равномерно сходиться к предельной функции , т.е. .

Причем и непрерывны в каждой точке отрезка на основании только что доказанной теоремы:

.

3) Но представляет собой частичную сумму такого ряда: .

4) А является суммой ряда .

На основании доказанной теоремы можно записать:

5) Последнее равенство можно переписать следующим образом:

.

Теорема доказана.

Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.

Страницы: 1 2 3 4 

Образование, педагогика, воспитание:

Взаимосвязь процессов функционирования и развития в Омской области с элементами содержания общего образования
Регионально-национальный компонент содержания общего образования предопределяется содержанием понятия «регион». Регион – это территория, объединенная общим признаком, отличающим данную территорию от соседних территорий. Исходя из этого определения, очевидно, что в зависимости от выявленных признако ...

Функции и средства педагогического общения
Традиционно в общении выделяют три взаимосвязанных функции: коммуникативную (обмен информацией), перцептивную (восприятие и познание людьми друг друга), интерактивную (организация и регуляция совместной деятельности. Эти функции общения в педагогической деятельности реализуются в единстве, но для р ...

Анализ методов, подходов, приемов, средства для развития изобретательских способностей
Развитие изобретательских способностей студентов – деятельность, основанная на использовании комплекса способов и средств, обеспечивающих выявление и развитие творческих способностей студентов инженерных специальностей. Эти способы и средства следует рассматривать как дополнение к существующей сист ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru