формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Изучение особенностей развития некоторых сторон позновательной деятельности
детей с недостатками слуха дошкольного и младшего школьного возраста
Теоретические положения Л. С. Выготского о сложной структуре аномального развития ребенка, разграничении первичных и вторичных нарушений в психическом развитии способствовали нового подхода к рассмотрению особенностей позновательной деятельности детей с недостатками слуха ( Р.М.Боскис, Т.А.Власова, ...
Значение и роль дидактических игр на уроке математики
Исследования показали, что игра – эффективное средство умственного развития ребенка, формирования его речи, воображения, суждений, умозаключений (А. Люблинская, Р. Римбург, В. Черков, Р. Жуковская, др.). Рассмотрению игры как многообразной практической познавательной деятельности ребенка большое вн ...
Начальный этап обучения
На начальном этапе обучения предпочтение следует отдавать учебным текстам. Иногда для расширения кругозора учащихся можно включать аутентичные тексты. Качество усвоения аутентичного материала может быть повышено использованием определенных упражнений и заданий. Овладение технологией чтения осуществ ...