формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Словарная работа на уроках русского языка в специальной школе VIII вида
Работу над трудными словами следует проводить систематически, слова распределяются по темам уроков, связываются с изучением определенных правил, пишутся словарные диктанты. Методы работы над правописанием трудных слов Учитель записывает слово, подлежащее изучению на доске. Вставка слова в классное ...
Методические требования к художественным текстам для домашнего чтения на
старшей стадии обучения учащихся иностранному языку
Для успешной организации процесса обучения самостоятельному чтению представляется важным рассмотреть требования к текстам. Основу типологической общности текстового материала для домашнего чтения на средней стадии обучения иностранному языку, на наш взгляд должны составлять требования к: 1) жанру, ...
Психологическая характеристика возрастных особенностей
учащихся 7 классов
Учащихся 7 классов можно отнести к подростковому возрасту. «Этот возраст обычно характеризуют как переломный, переходный, критический, но чаще как возраст полового созревания». Л.С. Выготский различал три точки созревания: органического, полового и социального. У человека в истории развития обществ ...