формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Реализация технологии физического воспитания в работе с детьми 5–6 лет с
задержкой психического развития
В РФ действуют специальные образовательные учреждения I-VШ видов. Для обучения и воспитания детей с ЗПР организуются учреждения VII вида: детский сад компенсирующего вида с приоритетным осуществлением квалифицированной коррекции в физическом и психическом развитии воспитанников; детский сад комбини ...
Специфика обучения и воспитания детей с нарушениями слуха
Глухой и слабослышащий ребенок, как и слышащий, при рождении — существо, открытое миру, которому необходимо воспитание как помощь в жизни. В соответствии со своей биологической сущностью он способен к обучению и может в процессе социализации получить воспитание и образование, которые станут предпос ...
Особенности речи детей младшего школьного возраста по сравнению с нормально
развивающимися сверстниками
В младшем школьном возрасте у детей с легкой степени умственной отсталости отмечается недоразвитие речи, которое характеризуется нарушением всех ее сторон: смысловой, грамматической, звуковой, а также ограниченностью и бедностью словаря. Произносительная сторона речи Недоразвитие речи прежде всего ...