Элементы заданного функционального ряда являются непрерывными функциями при R, значит, они будут непрерывными и на отрезке
, ведь
.
Исходный ряд равномерно и абсолютно сходится при
R по признаку Вейерштрасса, а, значит, и на отрезке
, так как:
a) для
R,
N;
б) при
R;
в) - числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии:
).
Следовательно, к заданному функциональному ряду можно применить теорему о почленном интегрировании ряда на отрезке
.
Ответ: Теорему применить можно.
Пример №33 (№114 из [7], студент с помощью преподавателя).
Показать, что ряд допускает почленное интегрирование на отрезке
, написать полученный при этом ряд.
Решение
Функциональный ряд можно интегрировать почленно на отрезке
, если на этом отрезке его члены непрерывны, и ряд равномерно сходится.
Элементы функционального ряда являются непрерывными функциями для
R, значит, и на отрезке
.
Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке . Действительно, так как:
а) для
R,
N;
б) при
R;
в) - числовой положительный сходящийся ряд. По признаку Даламбера:
, 0<1.
Значит, теорему о почленном интегрировании к функциональному ряду на отрезке
применить можно.
Проинтегрируем почленно заданный ряд на отрезке .
.
Ряд, полученный от почленного интегрирования заданного функционального ряда имеет вид на
.
Ответ: при
.
Образование, педагогика, воспитание:
Содержание внеклассной работы
Внеклассная работа проводится во внеурочное время в виде занятий по гимнастике, легкой атлетике, лыжной подготовке к туризму, в секциях, группах, командах. Основным содержанием внеклассных занятий с детьми является материал учебной программы по физической культуре, используемый с целью совершенство ...
Наблюдение за игровой деятельностью детей
Цель: выявление особенностей взаимодействия мальчиков и девочек в игре, предпочтения в выборе партнёра по игре, особенностей полоролевого поведения детей. Объектом наблюдения являлись действия детей в игре, выявлялись женские и мужские признаки и качества личности. В процессе наблюдения нами отмеча ...
Диагностика уровней эвристического мышления детей
младшего школьного возраста
Для изучения использования эвристической технологии в образовательном процессе нами была проведена опытно-экспериментальная работа, которая состояла на базе МОУ СОШ №2 города Ишима и проводилась в три этапа: На первом - констатирующем - этапе определялся исходный уровень развития эвристического мыш ...