Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 24

Элементы заданного функционального ряда являются непрерывными функциями при R, значит, они будут непрерывными и на отрезке , ведь .

Исходный ряд равномерно и абсолютно сходится при R по признаку Вейерштрасса, а, значит, и на отрезке , так как:

a) для R, N;

б) при R;

в) - числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии: ).

Следовательно, к заданному функциональному ряду можно применить теорему о почленном интегрировании ряда на отрезке .

Ответ: Теорему применить можно.

Пример №33 (№114 из [7], студент с помощью преподавателя).

Показать, что ряд допускает почленное интегрирование на отрезке , написать полученный при этом ряд.

Решение

Функциональный ряд можно интегрировать почленно на отрезке , если на этом отрезке его члены непрерывны, и ряд равномерно сходится.

Элементы функционального ряда являются непрерывными функциями для R, значит, и на отрезке .

Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке . Действительно, так как:

а) для R, N;

б) при R;

в) - числовой положительный сходящийся ряд. По признаку Даламбера: , 0<1.

Значит, теорему о почленном интегрировании к функциональному ряду на отрезке применить можно.

Проинтегрируем почленно заданный ряд на отрезке .

.

Ряд, полученный от почленного интегрирования заданного функционального ряда имеет вид на .

Ответ: при .

Страницы: 19 20 21 22 23 24 25 26 27 28 29

Образование, педагогика, воспитание:

Планирование как результат конструктивной деятельности педагога
Логическим итогом технологии конструирования образовательного процесса является материализация проекта педагогической деятельности в виде плана, плана-конспекта или конспекта в зависимости от опытности педагога. Сами подходы к планированию учебной и внеучебной деятельности школьников обусловлены су ...

Методика применения дидактических игр на уроках математики в первом классе
Для младшего школьного возраста учение – новое и непривычное дело. Поэтому при знакомстве со школьной жизнью игра способствует снятию барьера между «внешним миром знания» и психикой ребёнка. Игровое действие позволяет осваивать то, что заранее вызывает у младшего школьника страх неизвестности, пост ...

Методы, способствующие развитию познавательной активности учащихся на уроках биологии
Степень активности учащихся является реакцией, методы, и приемы работы преподавателя являются показателем его педагогического мастерства. Активными методами обучения следует называть те, которые максимально повышают уровень познавательной активности школьников, побуждают их к старательному учению. ...

Навигация по сайту

© 2019 Copyright www.ecsir.ru