Элементы заданного функционального ряда являются непрерывными функциями при
R, значит, они будут непрерывными и на отрезке
, ведь
.
Исходный ряд
равномерно и абсолютно сходится при
R по признаку Вейерштрасса, а, значит, и на отрезке
, так как:
a)
для
R,
N;
б)
при
R;
в)
- числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии:
).
Следовательно, к заданному функциональному ряду
можно применить теорему о почленном интегрировании ряда на отрезке
.
Ответ: Теорему применить можно.
Пример №33 (№114 из [7], студент с помощью преподавателя).
Показать, что ряд
допускает почленное интегрирование на отрезке
, написать полученный при этом ряд.
Решение
Функциональный ряд
можно интегрировать почленно на отрезке
, если на этом отрезке его члены непрерывны, и ряд равномерно сходится.
Элементы функционального ряда
являются непрерывными функциями для
R, значит, и на отрезке
.
Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке
. Действительно, так как:
а)
для
R,
N;
б)
при
R;
в)
- числовой положительный сходящийся ряд. По признаку Даламбера:
, 0<1.
Значит, теорему о почленном интегрировании к функциональному ряду
на отрезке
применить можно.
Проинтегрируем почленно заданный ряд на отрезке
.
.
Ряд, полученный от почленного интегрирования заданного функционального ряда имеет вид
на
.
Ответ:
при
.
Образование, педагогика, воспитание:
Профессиональная квалификация педагога
Нормативы и сферы деятельности педагога в принципе неизменяемы, а вот его становление — движение от возможного к действительному, начинаясь с предпрофессионального поиска себя, затем профессионального образования и продолжаясь в ходе работы по специальности, — во всех его аспектах индивидуально, т. ...
Методические рекомендации по проведению лекционных занятий
Курс "Математический анализ" входит в блок дисциплин предметной подготовки и занимает важное место среди них в процессе подготовки будущих педагогов - математиков. Целью курса является научное обоснование тех, относящихся к нему понятий, первое представление о которых дается в школе. Курс ...
Содержание подготовки детей к школе
Готовность к обучению в школе предполагает необходимый уровень физического развития ребенка, позволяющий ему быстро адаптироваться к школьным нагрузкам: увеличению продолжительности уроков и их количеству, отсутствию дневного сна, иному режиму питания и т. д. Нагрузка на уроках в школе предполагает ...