Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 24

Элементы заданного функционального ряда являются непрерывными функциями при R, значит, они будут непрерывными и на отрезке , ведь .

Исходный ряд равномерно и абсолютно сходится при R по признаку Вейерштрасса, а, значит, и на отрезке , так как:

a) для R, N;

б) при R;

в) - числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии: ).

Следовательно, к заданному функциональному ряду можно применить теорему о почленном интегрировании ряда на отрезке .

Ответ: Теорему применить можно.

Пример №33 (№114 из [7], студент с помощью преподавателя).

Показать, что ряд допускает почленное интегрирование на отрезке , написать полученный при этом ряд.

Решение

Функциональный ряд можно интегрировать почленно на отрезке , если на этом отрезке его члены непрерывны, и ряд равномерно сходится.

Элементы функционального ряда являются непрерывными функциями для R, значит, и на отрезке .

Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке . Действительно, так как:

а) для R, N;

б) при R;

в) - числовой положительный сходящийся ряд. По признаку Даламбера: , 0<1.

Значит, теорему о почленном интегрировании к функциональному ряду на отрезке применить можно.

Проинтегрируем почленно заданный ряд на отрезке .

.

Ряд, полученный от почленного интегрирования заданного функционального ряда имеет вид на .

Ответ: при .

Страницы: 19 20 21 22 23 24 25 26 27 28 29

Образование, педагогика, воспитание:

Развитие творческих способностей учащихся средствами графики
Художественное образование в целом и занятия графикой в частности призвано развивать эстетический и познавательный потенциал личности, стимулировать формирование эстетического сознания как основы культуры личности и основы эстетической деятельности, помогает подросткам самостоятельно освоить культу ...

Игровые технологии преподавания происхождения сущности государства и права в современной школе
Игра – это определенная целостная реальность, обязательно как-то соотносящаяся с существующим миром («кусок» жизни). В этой реальности действуют и общаются люди. Соответственно, в процессе игры играющие получают опыт. Составляющими опыта могут быть и знания, и эмоциональные впечатления, и навыки, и ...

Возможности хоккея в реализации задачи физического воспитания детей старшего дошкольного возраста
В примерной основной общеобразовательной программе дошкольного образования "Детство", которая полностью соответствует Федеральным государственным требованиям, в образовательной области "Физическая культура" предусмотрено обучению игре в баскетбол детей шестого и седьмого года жи ...

Навигация по сайту

© 2023 Copyright www.ecsir.ru