Элементы заданного функционального ряда являются непрерывными функциями при R, значит, они будут непрерывными и на отрезке
, ведь
.
Исходный ряд равномерно и абсолютно сходится при
R по признаку Вейерштрасса, а, значит, и на отрезке
, так как:
a) для
R,
N;
б) при
R;
в) - числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии:
).
Следовательно, к заданному функциональному ряду можно применить теорему о почленном интегрировании ряда на отрезке
.
Ответ: Теорему применить можно.
Пример №33 (№114 из [7], студент с помощью преподавателя).
Показать, что ряд допускает почленное интегрирование на отрезке
, написать полученный при этом ряд.
Решение
Функциональный ряд можно интегрировать почленно на отрезке
, если на этом отрезке его члены непрерывны, и ряд равномерно сходится.
Элементы функционального ряда являются непрерывными функциями для
R, значит, и на отрезке
.
Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке . Действительно, так как:
а) для
R,
N;
б) при
R;
в) - числовой положительный сходящийся ряд. По признаку Даламбера:
, 0<1.
Значит, теорему о почленном интегрировании к функциональному ряду на отрезке
применить можно.
Проинтегрируем почленно заданный ряд на отрезке .
.
Ряд, полученный от почленного интегрирования заданного функционального ряда имеет вид на
.
Ответ: при
.
Образование, педагогика, воспитание:
Игры и упражнения для развития речи и ознакомления с окружающим
Для успешного развития детей важно, чтобы они с детства приобрели жизненно необходимые сведения об окружающих их предметах и явлениях. На втором году жизни, когда дети свободно передвигаются, они постоянно сталкиваются с различными предметами, им нужно иметь некоторые представления о свойствах и на ...
Экспериментальное исследование эффективности применения дидактических игр в
процессе обучения информатике
Планирование экспериментальной части данного исследования осуществлялось с учётом основных требований к логике и организации педагогического эксперимента: определили цель, гипотезу, задачи, методы эксперимента и т.д. Перейдём к их конкретному описанию. Целью экспериментальной части исследования яви ...
Компетентностный подход в подготовке специалиста. Государственный
образовательный стандарт 3-го поколения
Учебные цели 1. Знать основные структурные компоненты педагогического процесса в вузе. 2. Знать специфику понятий – компетенция и компетентность, 3. Иметь представление об истории и особенностях компетентностного подхода в профессиональном образовании Отводимое время – 2 часа План лекции 1. Совреме ...