Элементы заданного функционального ряда являются непрерывными функциями при R, значит, они будут непрерывными и на отрезке
, ведь
.
Исходный ряд равномерно и абсолютно сходится при
R по признаку Вейерштрасса, а, значит, и на отрезке
, так как:
a) для
R,
N;
б) при
R;
в) - числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии:
).
Следовательно, к заданному функциональному ряду можно применить теорему о почленном интегрировании ряда на отрезке
.
Ответ: Теорему применить можно.
Пример №33 (№114 из [7], студент с помощью преподавателя).
Показать, что ряд допускает почленное интегрирование на отрезке
, написать полученный при этом ряд.
Решение
Функциональный ряд можно интегрировать почленно на отрезке
, если на этом отрезке его члены непрерывны, и ряд равномерно сходится.
Элементы функционального ряда являются непрерывными функциями для
R, значит, и на отрезке
.
Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке . Действительно, так как:
а) для
R,
N;
б) при
R;
в) - числовой положительный сходящийся ряд. По признаку Даламбера:
, 0<1.
Значит, теорему о почленном интегрировании к функциональному ряду на отрезке
применить можно.
Проинтегрируем почленно заданный ряд на отрезке .
.
Ряд, полученный от почленного интегрирования заданного функционального ряда имеет вид на
.
Ответ: при
.
Образование, педагогика, воспитание:
Личностно-ориентированный урок: технология проведения
Урок – основной элемент образовательного процесса, но в системе личностно-ориентированного обучения меняется его функция, форма организации. Личностно ориентированный урок в отличие от традиционного в первую очередь изменяет тип взаимодействия «учитель-ученик». От командного стиля педагог переходит ...
Психолого-лингвистические основы обучения иноязычному чтению в условиях
общеобразовательных школ
Поскольку самостоятельное чтение является рецептивной речевой деятельностью, которая осуществляется на основе самостоятельного использования определённых действий рецептивного характера, рассмотрим прежде всего наиболее важные вопросы: 1) о механизмах чтения в "норме" и при несовершенном ...
Психолого-педагогическое обоснование использования
наглядного метода обучения
Наглядность – это свойство, выражающее степень доступности и понятности психических образов объектов познания для познающего субъекта. В процессе создания образа восприятия объекта наряду с ощущением участвуют память и мышление. Образ воспринимаемого объекта является наглядным только тогда, когда ч ...