Элементы заданного функционального ряда являются непрерывными функциями при
R, значит, они будут непрерывными и на отрезке
, ведь
.
Исходный ряд
равномерно и абсолютно сходится при
R по признаку Вейерштрасса, а, значит, и на отрезке
, так как:
a)
для
R,
N;
б)
при
R;
в)
- числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии:
).
Следовательно, к заданному функциональному ряду
можно применить теорему о почленном интегрировании ряда на отрезке
.
Ответ: Теорему применить можно.
Пример №33 (№114 из [7], студент с помощью преподавателя).
Показать, что ряд
допускает почленное интегрирование на отрезке
, написать полученный при этом ряд.
Решение
Функциональный ряд
можно интегрировать почленно на отрезке
, если на этом отрезке его члены непрерывны, и ряд равномерно сходится.
Элементы функционального ряда
являются непрерывными функциями для
R, значит, и на отрезке
.
Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке
. Действительно, так как:
а)
для
R,
N;
б)
при
R;
в)
- числовой положительный сходящийся ряд. По признаку Даламбера:
, 0<1.
Значит, теорему о почленном интегрировании к функциональному ряду
на отрезке
применить можно.
Проинтегрируем почленно заданный ряд на отрезке
.
.
Ряд, полученный от почленного интегрирования заданного функционального ряда имеет вид
на
.
Ответ:
при
.
Образование, педагогика, воспитание:
Система образования Канады
Канада относится к числу государств, дипломы которых котируются во всем мире. Это неудивительно: Канада расходует на развитие системы образования больше средств, чем многие другие развитые страны. Канада является одним из мировых лидеров в области высоких технологий, аэрокосмической индустрии, микр ...
Изучение народного искусства в начальной школе на уроках изобразительного
искусства; влияние русской народной игрушки на формирование личности ребенка
В настоящее время многие аспекты освоения народного и декоративно- прикладного искусства в школе изучены достаточно полного и глубоко. Аспекты освоения народного искусства у школьников происходит на уроках декоративного рисования Содержание художественного – эстетического образования, основанное на ...
Гражданская активность и особенности ее формирования у учащихся школы
надомного обучения
В настоящее время в России на государственном уровне признано, что гражданско-правовое образование является одним из приоритетных направлений образовательной политики. Существует программа воспитания демократической гражданственности и образования в области прав человека, принятая Советом Европы 15 ...