Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 28

Действительно, так как:

а) для R, N;

б) для R;

в) - числовой положительный сходящийся ряд. По признаку Даламбера , 0<1.

Значит, теорему о почленном интегрировании к функциональному ряду на отрезке применить можно.

Ответ: Можно почленно проинтегрировать функциональный ряд .

Пример №37 (№106 из [10]).

Дифференцируя прогрессию получить новые разложения. Решение

Ряд сходится на интервале , как сумма убывающей геометрической прогрессии. Производная общего члена заданного функционального ряда примет вид: . Составим ряд из производных:

.

Исследуем полученный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

если , т.е. , то ряд сходится абсолютно.

Ответ: При дифференцировании заданной прогрессии получен ряд .

Пример №38 (№109 из [10]).

Убедиться, что ряд можно продифференцировать почленно.

Решение

Исследуем заданный функциональный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

Так как , то ряд сходится абсолютно при R. Тогда остаток ряда можно оценить с помощью неравенства , т.е.

.

Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, удовлетворяющее условию , приходим к неравенству . Итак, заданный функциональный ряд сходится абсолютно и равномерно при R. Члены ряда являются непрерывными функциями при R.

Производная общего члена заданного функционального ряда примет вид:

.

Страницы: 23 24 25 26 27 28 29 30 31 32

Образование, педагогика, воспитание:

Понятие и критерии педагогических технологий
Понятие «педагогическая технология» в последнее время получает более широкое распространение в теории обучения. Педагогическая технология означает системную совокупность и порядок функционирования всех методологических, инструментальных и личностных средств, используемых для достижения педагогическ ...

Психологическая характеристика возрастных особенностей учащихся 7 классов
Учащихся 7 классов можно отнести к подростковому возрасту. «Этот возраст обычно характеризуют как переломный, переходный, критический, но чаще как возраст полового созревания». Л.С. Выготский различал три точки созревания: органического, полового и социального. У человека в истории развития обществ ...

Роль семьи в воспитании ребёнка
Современный мир с его экономическими кризисами, увеличением числа разводов, ухудшением качества образования, постоянными стрессами и прочими «прелестями» цивилизации истощает людей физически, эмоционально и духовно, поэтому им все труднее воспитывать нас, детей. Именно мы, наиболее уязвимые и больш ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru