Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 28

Действительно, так как:

а) для R, N;

б) для R;

в) - числовой положительный сходящийся ряд. По признаку Даламбера , 0<1.

Значит, теорему о почленном интегрировании к функциональному ряду на отрезке применить можно.

Ответ: Можно почленно проинтегрировать функциональный ряд .

Пример №37 (№106 из [10]).

Дифференцируя прогрессию получить новые разложения. Решение

Ряд сходится на интервале , как сумма убывающей геометрической прогрессии. Производная общего члена заданного функционального ряда примет вид: . Составим ряд из производных:

.

Исследуем полученный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

если , т.е. , то ряд сходится абсолютно.

Ответ: При дифференцировании заданной прогрессии получен ряд .

Пример №38 (№109 из [10]).

Убедиться, что ряд можно продифференцировать почленно.

Решение

Исследуем заданный функциональный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

Так как , то ряд сходится абсолютно при R. Тогда остаток ряда можно оценить с помощью неравенства , т.е.

.

Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, удовлетворяющее условию , приходим к неравенству . Итак, заданный функциональный ряд сходится абсолютно и равномерно при R. Члены ряда являются непрерывными функциями при R.

Производная общего члена заданного функционального ряда примет вид:

.

Страницы: 23 24 25 26 27 28 29 30 31 32

Образование, педагогика, воспитание:

Разработка урока по истории средних веков с использованием наглядного метода обучения
Тема урока: Открытие Америки и морского пути в Индию. Цель урока: познакомить учащихся с причинами Великих географических открытий, их ходом, итогами и значением. Задачи: 1. Образовательная: Изучить экспедицию Ф. Магеллана, Васко да Гамы, Хр. Колумба. 2. Развивающая: развивать умение работы с текст ...

Теоретические основы преподавания живописи пейзажа акварелью
Для преподавания живописи пейзажа акварелью на уроках изобразительного искусства необходимо для начала ознакомить учащихся с различными видами пейзажей, картинами художников и разными акварельными техниками. Необходимо начать с выполнения простых упражнений, небольших этюдов пейзажа, а также деталь ...

Формы и методы формирования географических знаний о природе Родного края
Сущность природного краеведения заключается в комплексном изучении природы, важнейших аспектов ее развития и динамики в данной местности на основе использования доступных для детей форм и методов исследования географических наук. Говоря о специфике методики формирования географических представлений ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru