Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 28

Действительно, так как:

а) для R, N;

б) для R;

в) - числовой положительный сходящийся ряд. По признаку Даламбера , 0<1.

Значит, теорему о почленном интегрировании к функциональному ряду на отрезке применить можно.

Ответ: Можно почленно проинтегрировать функциональный ряд .

Пример №37 (№106 из [10]).

Дифференцируя прогрессию получить новые разложения. Решение

Ряд сходится на интервале , как сумма убывающей геометрической прогрессии. Производная общего члена заданного функционального ряда примет вид: . Составим ряд из производных:

.

Исследуем полученный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

если , т.е. , то ряд сходится абсолютно.

Ответ: При дифференцировании заданной прогрессии получен ряд .

Пример №38 (№109 из [10]).

Убедиться, что ряд можно продифференцировать почленно.

Решение

Исследуем заданный функциональный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

Так как , то ряд сходится абсолютно при R. Тогда остаток ряда можно оценить с помощью неравенства , т.е.

.

Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, удовлетворяющее условию , приходим к неравенству . Итак, заданный функциональный ряд сходится абсолютно и равномерно при R. Члены ряда являются непрерывными функциями при R.

Производная общего члена заданного функционального ряда примет вид:

.

Страницы: 23 24 25 26 27 28 29 30 31 32

Образование, педагогика, воспитание:

История Уфы в архитектуре
Мы все знаем, слышали и видели о сокровищах найденных в гробнице Тутанхамона, о терракотовых воинах, Венере Милосской, о скелетах мамонтов и других находках археологов обнаруженных в Египте, Китае, Якутии, Греции, Турции и так далее, но даже не представляем какие древности хранят наши земли. Сущест ...

Основные характеристики младшего школьного возраста
Младший школьный возраст — период жизни ребенка от 6-7 до 10 лет, когда он проходит обучение в начальных классах (I – IV классы) современной школе. Для этого возраста характерно, что в качестве ведущей у ребенка формируется учебная деятельность, в которой происходит усвоение человеческого опыта, пр ...

Цели и задачи профильного обучения
В наше время одним из важнейших направлений модернизации системы образования в России остаётся переход к старшей профильной школе. Необходимость перехода старшей ступени на профильное обучение определена Правительством России в «Концепции модернизации российского образования на период до 2010 года» ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru