Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 28

Действительно, так как:

а) для R, N;

б) для R;

в) - числовой положительный сходящийся ряд. По признаку Даламбера , 0<1.

Значит, теорему о почленном интегрировании к функциональному ряду на отрезке применить можно.

Ответ: Можно почленно проинтегрировать функциональный ряд .

Пример №37 (№106 из [10]).

Дифференцируя прогрессию получить новые разложения. Решение

Ряд сходится на интервале , как сумма убывающей геометрической прогрессии. Производная общего члена заданного функционального ряда примет вид: . Составим ряд из производных:

.

Исследуем полученный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

если , т.е. , то ряд сходится абсолютно.

Ответ: При дифференцировании заданной прогрессии получен ряд .

Пример №38 (№109 из [10]).

Убедиться, что ряд можно продифференцировать почленно.

Решение

Исследуем заданный функциональный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

Так как , то ряд сходится абсолютно при R. Тогда остаток ряда можно оценить с помощью неравенства , т.е.

.

Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, удовлетворяющее условию , приходим к неравенству . Итак, заданный функциональный ряд сходится абсолютно и равномерно при R. Члены ряда являются непрерывными функциями при R.

Производная общего члена заданного функционального ряда примет вид:

.

Страницы: 23 24 25 26 27 28 29 30 31 32

Образование, педагогика, воспитание:

Психолого-педагогические условия развития общения со сверстниками у детей старшего дошкольного возраста
Дошкольный возраст, по мнению А. Н. Леонтьева, - это период первоначального фактического склада личности. Именно в это время происходит становление основных личностных механизмов и образований. Развиваются тесно связанные друг с другом эмоциональная и мотивационная сферы, формируется самосознание. ...

Дидактическая игра на уроке труда
Подготовка младших школьников к трудовой деятельности остается одной из основных и актуальных задач современной школы. Началом такой подготовки является формирование у учащихся интереса к труду и потребности овладеть определенными трудовыми умениями. Наиболее успешному осуществлению данной цели спо ...

Дезонтогенез речевого развития детей при легкой степени умственной отсталости у детей
Становление речи умственно отсталого ребенка осуществляется своеобразно и с большим запозданием. Он позднее и менее активно вступает в эмоциональный контакт с матерью. Исследователи отмечают, что в возрасте около года звуковые комплексы, произносимые детьми, бедны и характеризуются сниженной эмоцио ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru