Действительно, так как:
а)
для
R,
N;
б)
для
R;
в)
- числовой положительный сходящийся ряд. По признаку Даламбера
, 0<1.
Значит, теорему о почленном интегрировании к функциональному ряду
на отрезке
применить можно.
Ответ: Можно почленно проинтегрировать функциональный ряд
.
Пример №37 (№106 из [10]).
Дифференцируя прогрессию
получить новые разложения. Решение
Ряд
сходится на интервале
, как сумма убывающей геометрической прогрессии. Производная общего члена заданного функционального ряда примет вид:
. Составим ряд из производных:
.
Исследуем полученный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:
,
если
, т.е.
, то ряд
сходится абсолютно.
Ответ: При дифференцировании заданной прогрессии получен ряд
.
Пример №38 (№109 из [10]).
Убедиться, что ряд
можно продифференцировать почленно.
Решение
Исследуем заданный функциональный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:
,
Так как
, то ряд
сходится абсолютно при
R. Тогда остаток ряда можно оценить с помощью неравенства
, т.е.
.
Так как неравенства
и
равносильны, то, взяв
, где
- какое-нибудь целое положительное число, удовлетворяющее условию
, приходим к неравенству
. Итак, заданный функциональный ряд сходится абсолютно и равномерно при
R. Члены ряда являются непрерывными функциями при
R.
Производная общего члена заданного функционального ряда примет вид:
.
Образование, педагогика, воспитание:
Закономерности, критерии и степени исправления
осужденных
Понятия «исправление» и «перевоспитание» употребляются в трех аспектах: 1). для обозначения цели деятельности органов, исполняющих наказание, как юридическое воплощение психологического принципа исправимости личности; 2). для характеристики процесса изменения и перестройки личности осужденного; 3). ...
Психологическая характеристика возрастных особенностей
учащихся 7 классов
Учащихся 7 классов можно отнести к подростковому возрасту. «Этот возраст обычно характеризуют как переломный, переходный, критический, но чаще как возраст полового созревания». Л.С. Выготский различал три точки созревания: органического, полового и социального. У человека в истории развития обществ ...
Определения равномерно сходящихся функциональных последовательностей
и рядов
Опр.5. Последовательность функций равномерно сходится на множестве Х к предельной функции , если . Опр.6. Функциональная последовательность называется равномерно сходящейся на множестве X, если существует функция , в которой она равномерно сходится на множестве X. Обозначение: . Геометрический смыс ...