Действительно, так как:
а) для
R,
N;
б) для
R;
в) - числовой положительный сходящийся ряд. По признаку Даламбера
, 0<1.
Значит, теорему о почленном интегрировании к функциональному ряду на отрезке
применить можно.
Ответ: Можно почленно проинтегрировать функциональный ряд .
Пример №37 (№106 из [10]).
Дифференцируя прогрессию получить новые разложения. Решение
Ряд сходится на интервале
, как сумма убывающей геометрической прогрессии. Производная общего члена заданного функционального ряда примет вид:
. Составим ряд из производных:
.
Исследуем полученный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:
,
если , т.е.
, то ряд
сходится абсолютно.
Ответ: При дифференцировании заданной прогрессии получен ряд .
Пример №38 (№109 из [10]).
Убедиться, что ряд можно продифференцировать почленно.
Решение
Исследуем заданный функциональный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:
,
Так как , то ряд
сходится абсолютно при
R. Тогда остаток ряда можно оценить с помощью неравенства
, т.е.
.
Так как неравенства и
равносильны, то, взяв
, где
- какое-нибудь целое положительное число, удовлетворяющее условию
, приходим к неравенству
. Итак, заданный функциональный ряд сходится абсолютно и равномерно при
R. Члены ряда являются непрерывными функциями при
R.
Производная общего члена заданного функционального ряда примет вид:
.
Образование, педагогика, воспитание:
Методические аспекты изучения персоналий в школьном курсе истории
Главный элемент содержания исторического образования – знания. Они включают в себя сведения, познания в области истории, концентрируя социальный опыт человечества. Знания создают научную картину развития общества, дают представление об исторической действительности и предполагают постижение её чело ...
Развитие технического творчества учащихся при изучении спецдисциплин и в кружковой работе
Особое место в работе педагогических коллективов профтехучилищ должны занимать вопросы совершенствования методики организации занятий по техническому творчеству во внеучебное время. Это организация технических кружков, кружки по углубленному изучению профессии и предметов общетехнического цикла. В ...
Здоровьесберегающие технологии в современной образовательной среде
Перед тем как рассмотреть здоровьесберегающие технологии, обратимся к понятию «здоровьесберегающее образование». Это образование, не вызывающее у субъектов образования (обучаемых и обучающих) специфических заболеваний, которые называются дидактогенией, выгоранием личности учителя, полураспадом за о ...