Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 28

Действительно, так как:

а) для R, N;

б) для R;

в) - числовой положительный сходящийся ряд. По признаку Даламбера , 0<1.

Значит, теорему о почленном интегрировании к функциональному ряду на отрезке применить можно.

Ответ: Можно почленно проинтегрировать функциональный ряд .

Пример №37 (№106 из [10]).

Дифференцируя прогрессию получить новые разложения. Решение

Ряд сходится на интервале , как сумма убывающей геометрической прогрессии. Производная общего члена заданного функционального ряда примет вид: . Составим ряд из производных:

.

Исследуем полученный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

если , т.е. , то ряд сходится абсолютно.

Ответ: При дифференцировании заданной прогрессии получен ряд .

Пример №38 (№109 из [10]).

Убедиться, что ряд можно продифференцировать почленно.

Решение

Исследуем заданный функциональный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

Так как , то ряд сходится абсолютно при R. Тогда остаток ряда можно оценить с помощью неравенства , т.е.

.

Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, удовлетворяющее условию , приходим к неравенству . Итак, заданный функциональный ряд сходится абсолютно и равномерно при R. Члены ряда являются непрерывными функциями при R.

Производная общего члена заданного функционального ряда примет вид:

.

Страницы: 23 24 25 26 27 28 29 30 31 32

Образование, педагогика, воспитание:

Внедрение системы работы по обучению игре в хоккей детей подготовительной группы
Цель: формирование у детей подготовительной группы навыков игры в хоккей, предусмотренных примерной основной общеобразовательной программе дошкольного образования "Детство", развитие быстроты, формирование интереса к играм и упражнениям к элементам хоккея. Согласно примерной основной обще ...

Методическая типология грамматического материала
Вопросы ознакомления обучающихся с новым языковым материалом тесно связаны с проблемой типологии материала и его методической организацией. Важность методической типологии языкового материала объясняется стремлением рационализировать педагогический процесс, повысить его эффективность. Группировка я ...

Экологическая составляющая химического образования
Современная экология – обширный междисциплинарный научный комплекс. Наряду с общей экологией, исследующей отношения организмов и условий среды на уровне особей, популяций, биоценозов и экосистем, этот комплекс включает прикладную экологию и социальную экологию. Столь широкий круг проблем экологии п ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru