Преподаватель: Теоремы о почленном интегрировании и дифференцировании можно использовать при нахождении суммы ряда.
Пример №34 (№ 112 из [8], студент у доски с помощью преподавателя).
Найти сумму ряда , продифференцировав почленно ряд
Решение
Почленно продифференцировать функциональный ряд возможно, если члены ряда и производные его членов непрерывны, а сам ряд и ряд составленный из производных членов его ряда, сходится равномерно на данном промежутке.
Функциональный ряд представляет собой сумму убывающей геометрической прогрессии при
, т.е. при
, где
при
. Значит, сумма ряда
при
.
Следовательно, функциональный ряд сходится к
при
. Члены ряда
являются непрерывными функциями при
R.
Осталось доказать, что функциональный ряд равномерно сходится на промежутке
.
Для можно найти такое
, что
.
По признаку Даламбера сходимости положительных числовых рядов получим . А так как
, то
и, значит, числовой ряд
сходится.
Значит, по признаку Вейерштрасса будет равномерно и абсолютно сходиться функциональный ряд на промежутке
.
Следовательно, функциональный ряд на промежутке
можно почленно продифференцировать:
,
, т.е. сумма функционального ряда
непрерывно дифференцируема.
при
.
Ответ: при
.
Пример №35 (№113 из [10], студент у доски с помощью преподавателя).
Найти сумму ряда .
Решение
По признаку Даламбера абсолютной сходимости функциональных ря-дов имеем: . Если
, т.е.
, то заданный функциональный ряд сходится абсолютно. Так как ряд сходится, то его остаток оценивается с помощью неравенства
, т.е.
. Неравенства
и
равносильны, значит, взяв
, где
- какое-нибудь целое положительное число, которое удовлетворяет условию
, приходим к неравенству
.
Образование, педагогика, воспитание:
Общая характеристика индивидуальной речевой деятельности в концепции И.А.
Зимней
Внутренний механизм, управляющий видами речевой деятельности, это – Высшая интегративная вербально-коммуникативная функция человека (ВКФ), которой выражается единство сознания и деятельности индивида, как системная целостность способностей когнитивной, и языковой форм сознания. ВКФ – интегративная ...
Дидактические материалы и методика их использования
Дидактические материалы подразделяются на: а) фабричные (самостоятельные и контрольные работы по 4-6 вариантам); б) самодельные: карточки для индивидуальной работы (для сильных и слабых учеников), карточки для фронтальной работы, карточки для устного счёта. Назначение “Дидактических материалов”: по ...
Формирование оптимальной двигательной активности в старшем дошкольном
возрасте
Старший дошкольный возраст является наиболее важным периодом для формирования двигательной активности. Дети 5- 7 лет обладают богатым творческим воображением и стремятся удовлетворить свою биологическую потребность в движениях. Это позволяет им овладеть сложным программным материалом по развитию дв ...