Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 25

Преподаватель: Теоремы о почленном интегрировании и дифференцировании можно использовать при нахождении суммы ряда.

Пример №34 (№ 112 из [8], студент у доски с помощью преподавателя).

Найти сумму ряда , продифференцировав почленно ряд

Решение

Почленно продифференцировать функциональный ряд возможно, если члены ряда и производные его членов непрерывны, а сам ряд и ряд составленный из производных членов его ряда, сходится равномерно на данном промежутке.

Функциональный ряд представляет собой сумму убывающей геометрической прогрессии при , т.е. при , где при . Значит, сумма ряда при .

Следовательно, функциональный ряд сходится к при . Члены ряда являются непрерывными функциями при R.

Осталось доказать, что функциональный ряд равномерно сходится на промежутке .

Для можно найти такое , что .

По признаку Даламбера сходимости положительных числовых рядов получим . А так как , то и, значит, числовой ряд сходится.

Значит, по признаку Вейерштрасса будет равномерно и абсолютно сходиться функциональный ряд на промежутке .

Следовательно, функциональный ряд на промежутке можно почленно продифференцировать:

, , т.е. сумма функционального ряда непрерывно дифференцируема.

при .

Ответ: при .

Пример №35 (№113 из [10], студент у доски с помощью преподавателя).

Найти сумму ряда .

Решение

По признаку Даламбера абсолютной сходимости функциональных ря-дов имеем: . Если , т.е. , то заданный функциональный ряд сходится абсолютно. Так как ряд сходится, то его остаток оценивается с помощью неравенства , т.е. . Неравенства и равносильны, значит, взяв , где - какое-нибудь целое положительное число, которое удовлетворяет условию , приходим к неравенству .

Страницы: 20 21 22 23 24 25 26 27 28 29 30

Образование, педагогика, воспитание:

Экспериментальное исследование эффективности применения дидактических игр в процессе обучения информатике
Планирование экспериментальной части данного исследования осуществлялось с учётом основных требований к логике и организации педагогического эксперимента: определили цель, гипотезу, задачи, методы эксперимента и т.д. Перейдём к их конкретному описанию. Целью экспериментальной части исследования яви ...

Структура проблемного урока
Проблемным называется урок, на котором преподаватель целенаправленно создаёт ситуации для поисковой деятельности студентов при приобретении и закреплении новых знаний и способов действий. Особенностью проблемного урока является то, что повторение пройденного материала в большинстве случаев сливаетс ...

Формирование интереса у младшего школьников на интегрированных уроках изобразительного искусства
Использование различных видов работы на интегрированных уроков поддерживает внимание учеников на высоком уровне, что позволяет говорить о развивающей эффективности таких уроков. Это могут быть уроки изобразительного искусства с привлечением учебного материала смежных предметов а так же проведение, ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru