Преподаватель: Теоремы о почленном интегрировании и дифференцировании можно использовать при нахождении суммы ряда.
Пример №34 (№ 112 из [8], студент у доски с помощью преподавателя).
Найти сумму ряда
, продифференцировав почленно ряд
Решение
Почленно продифференцировать функциональный ряд возможно, если члены ряда и производные его членов непрерывны, а сам ряд и ряд составленный из производных членов его ряда, сходится равномерно на данном промежутке.
Функциональный ряд
представляет собой сумму убывающей геометрической прогрессии при
, т.е. при
, где
при
. Значит, сумма ряда
при
.
Следовательно, функциональный ряд
сходится к
при
. Члены ряда
являются непрерывными функциями при
R.
Осталось доказать, что функциональный ряд
равномерно сходится на промежутке
.
Для
можно найти такое
, что
.
По признаку Даламбера сходимости положительных числовых рядов получим
. А так как
, то
и, значит, числовой ряд
сходится.
Значит, по признаку Вейерштрасса будет равномерно и абсолютно сходиться функциональный ряд
на промежутке
.
Следовательно, функциональный ряд
на промежутке
можно почленно продифференцировать:
,
, т.е. сумма функционального ряда
непрерывно дифференцируема.
при
.
Ответ:
при
.
Пример №35 (№113 из [10], студент у доски с помощью преподавателя).
Найти сумму ряда
.
Решение
По признаку Даламбера абсолютной сходимости функциональных ря-дов имеем:
. Если
, т.е.
, то заданный функциональный ряд сходится абсолютно. Так как ряд сходится, то его остаток оценивается с помощью неравенства
, т.е.
. Неравенства
и
равносильны, значит, взяв
, где
- какое-нибудь целое положительное число, которое удовлетворяет условию
, приходим к неравенству
.
Образование, педагогика, воспитание:
Игры, развивающие речевое дыхание
Хорошо поставленное речевое дыхание обеспечивает правильное произношение звуков, слов и фраз. Для того чтобы научиться выговаривать многие звуки, ребенок должен делать достаточно сильный вдох через рот. Ниже приведены упражнения, в которых ребенку в игровой форме предлагается подуть на различные пр ...
Методические рекомендации по теме: "Ознакомление с основами правового
сознания детей дошкольного возраста"
Центральное место отводится работе по формированию правового сознания у детей путем ознакомления их с ближайшим окружением. Обучение может строится по принципу постепенного движения от самого "Я" до окружающего мира. Темы ознакомления детей с основами правового сознания Младший дошкольный ...
Игры с использованием обобщающих слов
Общая цель для всех игр этого раздела – учить детей понимать обобщающие слова и использовать их в своей речи. Важно
, играя в эти игры, делать акцент на обобщающие слова: «Все это мебель (посуда, одежда и т.д.). Покажи где мебель (посуда, одежда и т.д.). Скажи – мебель (посуда, одежда и т.д.)». Или ...