Преподаватель: Теоремы о почленном интегрировании и дифференцировании можно использовать при нахождении суммы ряда.
Пример №34 (№ 112 из [8], студент у доски с помощью преподавателя).
Найти сумму ряда , продифференцировав почленно ряд
Решение
Почленно продифференцировать функциональный ряд возможно, если члены ряда и производные его членов непрерывны, а сам ряд и ряд составленный из производных членов его ряда, сходится равномерно на данном промежутке.
Функциональный ряд представляет собой сумму убывающей геометрической прогрессии при
, т.е. при
, где
при
. Значит, сумма ряда
при
.
Следовательно, функциональный ряд сходится к
при
. Члены ряда
являются непрерывными функциями при
R.
Осталось доказать, что функциональный ряд равномерно сходится на промежутке
.
Для можно найти такое
, что
.
По признаку Даламбера сходимости положительных числовых рядов получим . А так как
, то
и, значит, числовой ряд
сходится.
Значит, по признаку Вейерштрасса будет равномерно и абсолютно сходиться функциональный ряд на промежутке
.
Следовательно, функциональный ряд на промежутке
можно почленно продифференцировать:
,
, т.е. сумма функционального ряда
непрерывно дифференцируема.
при
.
Ответ: при
.
Пример №35 (№113 из [10], студент у доски с помощью преподавателя).
Найти сумму ряда .
Решение
По признаку Даламбера абсолютной сходимости функциональных ря-дов имеем: . Если
, т.е.
, то заданный функциональный ряд сходится абсолютно. Так как ряд сходится, то его остаток оценивается с помощью неравенства
, т.е.
. Неравенства
и
равносильны, значит, взяв
, где
- какое-нибудь целое положительное число, которое удовлетворяет условию
, приходим к неравенству
.
Образование, педагогика, воспитание:
Развитие технического творчества учащихся при изучении спецдисциплин и в кружковой работе
Особое место в работе педагогических коллективов профтехучилищ должны занимать вопросы совершенствования методики организации занятий по техническому творчеству во внеучебное время. Это организация технических кружков, кружки по углубленному изучению профессии и предметов общетехнического цикла. В ...
Дидактические процессы в предмете физическая культура
Спорт – это значимое социальное явление, несмотря на это он совсем недавно попал в область внимания социологов. До сих пор существует мнение, что он прерогатива спортивных наук. Все же сегодня большинство исследователей согласны с тем, что его нужно изучать не только с точки зрения физкультурной те ...
Понятие о технологии конструирования
педагогического процесса
Одним из решающих условий успешного протекания педагогического процесса является его конструирование, включающее в себя анализ, диагностику, определение прогноза и разработку проекта деятельности. На этом этапе решения педагогической задачи можно выделить тесно связанные между собой виды деятельнос ...