Преподаватель: Теоремы о почленном интегрировании и дифференцировании можно использовать при нахождении суммы ряда.
Пример №34 (№ 112 из [8], студент у доски с помощью преподавателя).
Найти сумму ряда
, продифференцировав почленно ряд
Решение
Почленно продифференцировать функциональный ряд возможно, если члены ряда и производные его членов непрерывны, а сам ряд и ряд составленный из производных членов его ряда, сходится равномерно на данном промежутке.
Функциональный ряд
представляет собой сумму убывающей геометрической прогрессии при
, т.е. при
, где
при
. Значит, сумма ряда
при
.
Следовательно, функциональный ряд
сходится к
при
. Члены ряда
являются непрерывными функциями при
R.
Осталось доказать, что функциональный ряд
равномерно сходится на промежутке
.
Для
можно найти такое
, что
.
По признаку Даламбера сходимости положительных числовых рядов получим
. А так как
, то
и, значит, числовой ряд
сходится.
Значит, по признаку Вейерштрасса будет равномерно и абсолютно сходиться функциональный ряд
на промежутке
.
Следовательно, функциональный ряд
на промежутке
можно почленно продифференцировать:
,
, т.е. сумма функционального ряда
непрерывно дифференцируема.
при
.
Ответ:
при
.
Пример №35 (№113 из [10], студент у доски с помощью преподавателя).
Найти сумму ряда
.
Решение
По признаку Даламбера абсолютной сходимости функциональных ря-дов имеем:
. Если
, т.е.
, то заданный функциональный ряд сходится абсолютно. Так как ряд сходится, то его остаток оценивается с помощью неравенства
, т.е.
. Неравенства
и
равносильны, значит, взяв
, где
- какое-нибудь целое положительное число, которое удовлетворяет условию
, приходим к неравенству
.
Образование, педагогика, воспитание:
Учебные кинофильмы на уроках
Учебное кино – самое популярное из всех технических средств обучения, применяемое в рамках видеометода. Учебное кино можно с успехом включать в урок в тех случаях, когда необходимо: показать (или смоделировать) явления и процессы (реже предметы), увидеть которые невозможно вообще или без особой тех ...
Анализ учебников с точки зрения вероятностно – стохастической линии
Как показал анализ анкет, в школе №27 вероятностно-стохастическая линия включена в учебные планы учителей математики, но при прохождении нами педагогической практики (5 курс) в школе №14 выяснилось, что данная тема не рассматривалась учителем до 11 класса, хотя профиль класса социально-экономически ...
Необходимость воспитания чувства юмора в дошкольном детстве
Дошкольное детство – это большой отрезок жизни ребенка. Условия жизни в это время стремительно расширяются: рамки семьи раздвигаются до пределов улицы, города, страны. Ребенок открывает для себя мир человеческих отношений, разных видов деятельности и общественных функций людей. Период дошкольного д ...