Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 25

Преподаватель: Теоремы о почленном интегрировании и дифференцировании можно использовать при нахождении суммы ряда.

Пример №34 (№ 112 из [8], студент у доски с помощью преподавателя).

Найти сумму ряда , продифференцировав почленно ряд

Решение

Почленно продифференцировать функциональный ряд возможно, если члены ряда и производные его членов непрерывны, а сам ряд и ряд составленный из производных членов его ряда, сходится равномерно на данном промежутке.

Функциональный ряд представляет собой сумму убывающей геометрической прогрессии при , т.е. при , где при . Значит, сумма ряда при .

Следовательно, функциональный ряд сходится к при . Члены ряда являются непрерывными функциями при R.

Осталось доказать, что функциональный ряд равномерно сходится на промежутке .

Для можно найти такое , что .

По признаку Даламбера сходимости положительных числовых рядов получим . А так как , то и, значит, числовой ряд сходится.

Значит, по признаку Вейерштрасса будет равномерно и абсолютно сходиться функциональный ряд на промежутке .

Следовательно, функциональный ряд на промежутке можно почленно продифференцировать:

, , т.е. сумма функционального ряда непрерывно дифференцируема.

при .

Ответ: при .

Пример №35 (№113 из [10], студент у доски с помощью преподавателя).

Найти сумму ряда .

Решение

По признаку Даламбера абсолютной сходимости функциональных ря-дов имеем: . Если , т.е. , то заданный функциональный ряд сходится абсолютно. Так как ряд сходится, то его остаток оценивается с помощью неравенства , т.е. . Неравенства и равносильны, значит, взяв , где - какое-нибудь целое положительное число, которое удовлетворяет условию , приходим к неравенству .

Страницы: 20 21 22 23 24 25 26 27 28 29 30

Образование, педагогика, воспитание:

Законодательная база в области образования
В Республике Корея право на образование гарантировано Конституцией. Существует также специальный закон об образовании, а также отдельные нормативно-правовые акты. Из них наибольший интерес представляют подзаконные акты и правительственные программы в области реформирования образования. С 1991 г. в ...

Адаптация и социализация детей из семей мигрантов
Основная доля мигрантов, проживающих в городе Лянторе - это граждане иностранных государств ближнего зарубежья, не являющиеся беженцами. В МОУ "ЛСОШ №5" на 2009-2010 учебный год обучается 14 учащихся из семей мигрантов, трое из них слабо владеют русским языком. Слабое знание детьми мигран ...

Воспитание и организация детей перед занятием
Подготовка детей к занятию, когда их внимание переключается от самостоятельной деятельности к учебной, имеет очень большое значение. Ее следует осуществлять так, чтобы не вызвать у ребенка огорчения из-за прерванной игры, заинтересовать содержанием предстоящего занятия. Основная воспитательная зада ...

Навигация по сайту

© 2024 Copyright www.ecsir.ru