Пример №29 (№86 из [10]).
Показать, что ряд сходится равномерно на интервале .
Решение
Так как при любом R и ряд - сходящийся числовой положительный ряд - ряд Дирихле с , то ряд по признаку Вейерштрасса, сходится абсолютно и равномерно на интервале .
Ответ: Заданный ряд сходится абсолютно и равномерно при .
Практическое занятие №3
Тема: "Интегрирование и дифференцирование функциональных
последовательностей и рядов"
Тип занятия: практикум решения задач.
Форма занятия: комбинированная между коллективной и фронтальной.
Средства обучения на занятии: сборник задач, методические рекомендации к практическим занятиям, телевизор, подключенный к компьютеру, графопроектор, доска, мел.
Цель: закрепление знаний полученных на лекции, применение их на практике.
Методы: словесные, наглядные, по дидактической цели - познавательные, по характеру познавательной деятельности - проблемные.
Ход занятия:
Организационная часть: Студентам сообщается тема практического занятия, его цель, проверка присутствующих (3 минуты).
2. Основная часть: Проверка домашнего задания (12 минут). Фронтальный опрос по изученной теме (10 минут). Ознакомление с новым материалом, первичное закрепление и осмысление (60 минут). Подведение итогов и постановка домашнего задания. (5 минут).
Конспект занятия
Преподаватель: Тема занятия: "Интегрирование и дифференцирование функциональных последовательностей и рядов". Цель - приобрести навыки решения задач по вышеуказанной теме. Но прежде, проведем самостоятельную работу, которая позволит определить, насколько успешно вы справились с домашним заданием.
Проводится самостоятельная работа по домашнему заданию на 15 минут. В самостоятельной работе предлагается 3 варианта, в каждом варианте по 2 задания. Например, Вариант №1: №№ 23, 26; Вариант №2: №№ 24, 27, Вариант №2: №№ 21,28. Преподаватель самостоятельно определяет какие задания и в какой последовательности будут содержать каждый из вариантов. Во время проведения самостоятельной работы у доски работают студенты, которым предлагаются наиболее сложные на взгляд преподавателя примеры. Например, №№ 29, 25. По завершении самостоятельной работы эти примеры проверяются аудиторией.
Преподаватель: А теперь давайте вспомним определения и формули-ровки теорем по теме "Интегрирование и дифференцирование функциональных последовательностей и рядов", необходимые нам сегодня для решения упражнений.
Проводится фронтальный опрос с целью проверки теоретических знаний по изучаемой теме. Студентам предлагается отвечать на следующие вопросы у доски, выполняя необходимые при ответе записи. К доске вызываются сразу 3-4 студента.
Вопрос 1:. Сформулируйте теорему о непрерывности суммы функционального ряда в точке.
Ответ: Теорема 1. Если функции непрерывны в точке , и функциональный ряд равномерно сходится на множестве , то его сумма также непрерывна в точке .
Образование, педагогика, воспитание:
Проблема сохранения здоровья подрастающего поколения
Конец XX столетия ознаменован целым комплексом глобальных изменений в социальной, экономической и духовной сферах общества, утратой ранее значимых ценностей и возникновением новых, формированием новой философии жизни. Человеческое сообщество захлестывает ускоряющийся динамизм социальных процессов, ...
Паронимы в русском языке
Паронимы (гр. para - возле + onima - имя) - это однокорневые слова, близкие по звучанию, но не совпадающие в значениях: подпись - роспись, одеть - надеть, главный - заглавный. Паронимы, как правило, относятся к одной части речи и выполняют в предложении аналогичные синтаксические функции. Паронимам ...
Воспитание и организация детей перед занятием
Подготовка детей к занятию, когда их внимание переключается от самостоятельной деятельности к учебной, имеет очень большое значение. Ее следует осуществлять так, чтобы не вызвать у ребенка огорчения из-за прерванной игры, заинтересовать содержанием предстоящего занятия. Основная воспитательная зада ...