Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 18

Остаток исследуемого функционального ряда будет не больше остатка числового положительного ряда, т.е. .

Найдем теперь, при каком значении будет выполняться неравенство .

Для этого необходимо решить неравенство , , .

Ответ: При .

В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.

Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональный ряд на равномерную сходимость с помощью определения равномерной сходимости и признака Вейерштрасса. Для окончательного закрепления на дом будут заданы аналогичные примеры.

Домашнее задание: практическое занятие №13 из [9].

Ниже приведены решенные номера домашнего задания.

Пример №23 (№54 из [10]).

Показать, что ряд сходится неравномерно в интервале .

Решение.

В указанном интервале ряд сходится как бесконечно убывающая геометрическая прогрессия. Имеем т.е. .

Но , . Следовательно, приняв , невозможно добиться выполнения неравенства при . Итак, ряд сходится неравномерно на интервале .

Ответ: Доказана неравномерная сходимость на интервале .

Пример №24 (№63 из [10]).

Исследовать на равномерную сходимость на промежутке .

Решение

Так как N, R, то в качестве мажорантного ряда выберем - числовой положительный ряд. Он сходится, так как это ряд Дирихле с . Тогда, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится равномерно и абсолютно на промежутке , так как выполняется неравенство при .

Ответ: Заданный ряд сходится абсолютно и равномерно на интервале .

Пример №25 (№ 66 из [10]).

Исследовать на равномерную сходимость на промежутке .

Страницы: 13 14 15 16 17 18 19 20 21 22 23

Образование, педагогика, воспитание:

Варианты решения и постановки проблемы
Существуют различные варианты постановки и решения проблемы. 1. Проблему решает педагог Педагог ставит проблему или проблемы, и сам их решает, излагая лекционный материал. При такой форме проведения занятия учащиеся внешне пассивны, но внутри каждого из них могут интенсивно протекать процессы поним ...

Формирование знаний на уроке окружающего мира с использованием презентации на тему: «Животный и растительный мир болот»
По программе «Начальная школа XIX век» встречается тема «Животный и растительный мир болот». Целью урока: расширить представления учащихся о животном и растительном мире водоемов: болот. Развивающая: развивать ОУУН: учебно–управленческие умения: организовывать свой труд, контроль и анализ собственн ...

Обобщение экспериментальных данных по исследуемой проблеме
Теперь перейдем к анализу звукопроизношением детей экспериментальной группы. В данной работе неоднократно подчеркивалась мысль, что внятность произношения детей с нарушенным слухом во многом зависит от качества произношения звуков. Известно, что в речи детей с нарушенным слухом могут быть различные ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru