Остаток
исследуемого функционального ряда будет не больше остатка числового положительного ряда, т.е.
.
Найдем теперь, при каком значении
будет выполняться неравенство
.
Для этого необходимо решить неравенство
,
,
.
Ответ: При
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональный ряд на равномерную сходимость с помощью определения равномерной сходимости и признака Вейерштрасса. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: практическое занятие №13 из [9].
Ниже приведены решенные номера домашнего задания.
Пример №23 (№54 из [10]).
Показать, что ряд
сходится неравномерно в интервале
.
Решение.
В указанном интервале ряд сходится как бесконечно убывающая геометрическая прогрессия. Имеем
т.е.
.
Но
,
. Следовательно, приняв
, невозможно добиться выполнения неравенства
при
. Итак, ряд
сходится неравномерно на интервале
.
Ответ: Доказана неравномерная сходимость на интервале
.
Пример №24 (№63 из [10]).
Исследовать на равномерную сходимость
на промежутке
.
Решение
Так как
N,
R, то в качестве мажорантного ряда выберем
- числовой положительный ряд. Он сходится, так как это ряд Дирихле с
. Тогда, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд
сходится равномерно и абсолютно на промежутке
, так как выполняется неравенство
при
.
Ответ: Заданный ряд сходится абсолютно и равномерно на интервале
.
Пример №25 (№ 66 из [10]).
Исследовать на равномерную сходимость
на промежутке
.
Образование, педагогика, воспитание:
Образование в США
Считается, что США – наилучший вариант для магистратуры и докторантуры. Многие американские университеты играют первую роль в исследовательских проектах, имеющих международное значение. Их уровень определяется отличной лабораторно-технической базой, легким доступом колледж всем мыслимым источникам ...
Проведение пальчиковых игр
Обязательно посмотрите хотя бы на одну маму или бабушку, которая «исполняет» игру так, что детям нравится. Имеет значение-многое: темп, тембр голоса, выражение лица, громкость, положение тела, а не только пальцев. Помогать ли пальчикам? Это непременно нужно делать, если вы занимаетесь с младенцем, ...
Влияние процесса саморегуляции на социальную адаптацию
одаренного ребенка
Каждый ребенок обладает одному ему присущими свойствами, которые и создают его индивидуальность. Анализ литературных источников по проблеме приводит к выводу о том, что трудности в общении в значительной мере связаны с особенностями личности одаренных. И роль этих особенностей столь велика, что с о ...