Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 18

Остаток исследуемого функционального ряда будет не больше остатка числового положительного ряда, т.е. .

Найдем теперь, при каком значении будет выполняться неравенство .

Для этого необходимо решить неравенство , , .

Ответ: При .

В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.

Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональный ряд на равномерную сходимость с помощью определения равномерной сходимости и признака Вейерштрасса. Для окончательного закрепления на дом будут заданы аналогичные примеры.

Домашнее задание: практическое занятие №13 из [9].

Ниже приведены решенные номера домашнего задания.

Пример №23 (№54 из [10]).

Показать, что ряд сходится неравномерно в интервале .

Решение.

В указанном интервале ряд сходится как бесконечно убывающая геометрическая прогрессия. Имеем т.е. .

Но , . Следовательно, приняв , невозможно добиться выполнения неравенства при . Итак, ряд сходится неравномерно на интервале .

Ответ: Доказана неравномерная сходимость на интервале .

Пример №24 (№63 из [10]).

Исследовать на равномерную сходимость на промежутке .

Решение

Так как N, R, то в качестве мажорантного ряда выберем - числовой положительный ряд. Он сходится, так как это ряд Дирихле с . Тогда, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится равномерно и абсолютно на промежутке , так как выполняется неравенство при .

Ответ: Заданный ряд сходится абсолютно и равномерно на интервале .

Пример №25 (№ 66 из [10]).

Исследовать на равномерную сходимость на промежутке .

Страницы: 13 14 15 16 17 18 19 20 21 22 23

Образование, педагогика, воспитание:

Обследование эмоциональной сферы ребенка
Приведенные задания позволяют исследовать эмоциональное развитие детей (в пределах обозначенных эмоций). Если во время выполнения заданий у ребенка проявляются замкнутость, резкая смена настроения, частые вспышки раздражения, гнева, то это свидетельствует о том, что ему необходимы внимание и особый ...

Правильная постановка задач на уроке
Нередко активность учащихся на уроке снижается из-за того, что учитель допускает ошибки при постановке задачи. Л.В. Вишнева выделяет наиболее типичные из них: 1. Учитель перечисляет упражнения, которые будут выполнять ученики на уроке, вместо того чтобы поставить задачу, которая должна быть решена. ...

Типологический отбор исследуемых
Допустим, необходимо изучить эффективность нового метода развития силы. Для эксперимента потребуется сформировать две группы исследуемых, предположим, по 10 человек. Однако судить об эффективности нового метода позволительно будет только в том случае, если удастся уравнять исходные уровни развития ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru