Остаток
исследуемого функционального ряда будет не больше остатка числового положительного ряда, т.е.
.
Найдем теперь, при каком значении
будет выполняться неравенство
.
Для этого необходимо решить неравенство
,
,
.
Ответ: При
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональный ряд на равномерную сходимость с помощью определения равномерной сходимости и признака Вейерштрасса. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: практическое занятие №13 из [9].
Ниже приведены решенные номера домашнего задания.
Пример №23 (№54 из [10]).
Показать, что ряд
сходится неравномерно в интервале
.
Решение.
В указанном интервале ряд сходится как бесконечно убывающая геометрическая прогрессия. Имеем
т.е.
.
Но
,
. Следовательно, приняв
, невозможно добиться выполнения неравенства
при
. Итак, ряд
сходится неравномерно на интервале
.
Ответ: Доказана неравномерная сходимость на интервале
.
Пример №24 (№63 из [10]).
Исследовать на равномерную сходимость
на промежутке
.
Решение
Так как
N,
R, то в качестве мажорантного ряда выберем
- числовой положительный ряд. Он сходится, так как это ряд Дирихле с
. Тогда, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд
сходится равномерно и абсолютно на промежутке
, так как выполняется неравенство
при
.
Ответ: Заданный ряд сходится абсолютно и равномерно на интервале
.
Пример №25 (№ 66 из [10]).
Исследовать на равномерную сходимость
на промежутке
.
Образование, педагогика, воспитание:
Организация элективных курсов по математике
В настоящее время предлагается проводить элективные курсы начиная с 7 класса профильной школы. Группа учащихся создаётся из учащихся параллельных классов, возможно так же создание объединённых групп из учеников последовательных классов. Для успешного проведения элективного курса необходимо, по возм ...
Критерий Коши равномерной сходимости функционального ряда
Теорема 2. Для того чтобы функциональный ряд равномерно сходился на множестве X, необходимо и достаточно, чтобы 0, N, , , N и выполнялось неравенство: . Доказательство 1) Составим разность частичных сумм функционального ряда : . 2) Если будут выполняться неравенства: , то это означает, что последов ...
Экспериментальное обоснование роли семейного физического воспитания в
малокомплектной школе
В таблице 2 указаны уровни сформированности навыков здорового образа жизни родителей на констатирующем этапе. Таблица 2 Уровень сформированности навыков здорового смысла на контролирующем этапе Уровень Контрольная группа Экспериментальная группа низкий 50% 60% средний 40% 40 % высокий 10 % 0 % В пр ...