Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 18

Остаток исследуемого функционального ряда будет не больше остатка числового положительного ряда, т.е. .

Найдем теперь, при каком значении будет выполняться неравенство .

Для этого необходимо решить неравенство , , .

Ответ: При .

В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.

Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональный ряд на равномерную сходимость с помощью определения равномерной сходимости и признака Вейерштрасса. Для окончательного закрепления на дом будут заданы аналогичные примеры.

Домашнее задание: практическое занятие №13 из [9].

Ниже приведены решенные номера домашнего задания.

Пример №23 (№54 из [10]).

Показать, что ряд сходится неравномерно в интервале .

Решение.

В указанном интервале ряд сходится как бесконечно убывающая геометрическая прогрессия. Имеем т.е. .

Но , . Следовательно, приняв , невозможно добиться выполнения неравенства при . Итак, ряд сходится неравномерно на интервале .

Ответ: Доказана неравномерная сходимость на интервале .

Пример №24 (№63 из [10]).

Исследовать на равномерную сходимость на промежутке .

Решение

Так как N, R, то в качестве мажорантного ряда выберем - числовой положительный ряд. Он сходится, так как это ряд Дирихле с . Тогда, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится равномерно и абсолютно на промежутке , так как выполняется неравенство при .

Ответ: Заданный ряд сходится абсолютно и равномерно на интервале .

Пример №25 (№ 66 из [10]).

Исследовать на равномерную сходимость на промежутке .

Страницы: 13 14 15 16 17 18 19 20 21 22 23

Образование, педагогика, воспитание:

Планирование работы классного руководителя
План работы классного руководителя - конкретное отображение предстоящего хода воспитательной работы в ее общих стратегических направлениях и мельчайших деталях. Классный руководитель должен начинать работу над планом в конце предшествующего учебного года, когда становится известным распределение уч ...

Особенности методики организации занятий по обучению спортивным играм
Согласно примерной основной общеобразовательной программе дошкольного образования "Детство", которая полностью соответствует Федеральным государственным требованиям, образовательной области "Физическая культура" для детей старшего дошкольного возраста предусмотрены спортивные уп ...

Особенности проявления интереса дошкольников к познавательной книге математического содержания и рабочим тетрадям
Интерес детей к познавательной книге изменяется на протяжении всего дошкольного периода. Он зависит от развития восприятия и накопления опыта рассматривания иллюстраций и слушания литературных сюжетов. В данном аспекте исследования в области восприятия дошкольниками литературы (А. В. Запорожец, С. ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru