Остаток исследуемого функционального ряда будет не больше остатка числового положительного ряда, т.е.
.
Найдем теперь, при каком значении будет выполняться неравенство
.
Для этого необходимо решить неравенство ,
,
.
Ответ: При .
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональный ряд на равномерную сходимость с помощью определения равномерной сходимости и признака Вейерштрасса. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: практическое занятие №13 из [9].
Ниже приведены решенные номера домашнего задания.
Пример №23 (№54 из [10]).
Показать, что ряд сходится неравномерно в интервале
.
Решение.
В указанном интервале ряд сходится как бесконечно убывающая геометрическая прогрессия. Имеем т.е.
.
Но ,
. Следовательно, приняв
, невозможно добиться выполнения неравенства
при
. Итак, ряд
сходится неравномерно на интервале
.
Ответ: Доказана неравномерная сходимость на интервале .
Пример №24 (№63 из [10]).
Исследовать на равномерную сходимость на промежутке
.
Решение
Так как N,
R, то в качестве мажорантного ряда выберем
- числовой положительный ряд. Он сходится, так как это ряд Дирихле с
. Тогда, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд
сходится равномерно и абсолютно на промежутке
, так как выполняется неравенство
при
.
Ответ: Заданный ряд сходится абсолютно и равномерно на интервале .
Пример №25 (№ 66 из [10]).
Исследовать на равномерную сходимость на промежутке
.
Образование, педагогика, воспитание:
Программа совершенствования педагогической деятельности
Исследования ученых и анализ практики показывает, что значительная часть педагогов учреждений дополнительного образования детей часто действуют стереотипно в силу сложившихся традиций. В настоящее время востребованы переоценка педагогом своего педагогического труда, выход за пределы традиционной ис ...
Историко-педагогические идеи в области
национального образования
В основе национального образования лежит позитивное восприятие своего исторического прошлого, раскрытие глубинных смыслов общественного бытия через осмысление собственных национальных корней и возрождение лучших народных традиций. Именно национальное образование, представляющее собой концентрат цен ...
Исследование опыта развития познавательной активности учащихся на уроках
биологии
Актуальность проблемы развития познавательной активности учащихся на основе биологического образования и наличие необходимых научных предпосылок для решения этой проблемы послужили основанием для выбора темы исследования: «Развитие познавательной активности учащихся на уроках биологии». Исследовани ...