Вопрос 4: Сформулировать достаточный признак равномерной сходимости функционального ряда - признак Вейерштрасса.
Ответ: Теорема. Пусть даны два ряда: функциональный , элементами которого являются функции
, определенные на множестве
, и числовой положительный сходящийся ряд
. Тогда, если для всех
выполняется неравенство
, то функциональный ряд
равномерно и абсолютно сходится на множестве
.
Преподаватель: А теперь рассмотрим задание на исследование равномерной сходимости функционального ряда.
Пример №16 (№349 из [7], c комментариями преподавателя).
Показать, что ряд
сходится равномерно при всех действительных значениях .
Решение
Данный ряд при любом значении сходится по признаку Лейбница, поэтому его остаток оценивается с помощью неравенства
, т.е.
.
Так как неравенства и
равносильны, то, взяв
, где
- какое-нибудь целое положительное число, которое удовлетворяет условию
, приходим к неравенству
. Итак, данный ряд сходится рав-номерно в промежутке
при всех
.
Ответ: Доказана равномерная сходимость для R.
Пример №17 (№51 из [10], студент у доски с помощью преподавателя).
Исследовать на равномерную сходимость ряд
на любом конечном интервале.
Решение
Докажем, что каково бы ни было число , данный ряд сходится равномерно и абсолютно в круге радиусом
, т.е.
.
Заданный ряд сходится при любом значении , в частности, при
, получаем числовой ряд:
.
Исследуем его на абсолютную сходимость, применив признак Даламбера . Так как
, то ряд
сходится, причем абсолютно.
Возьмем этот ряд в качестве мажорантного, по признаку Вейерштрасса равномерной сходимости функционального ряда при
.
Образование, педагогика, воспитание:
Справочная и научно-популярная литература и
методика их использования. Учебное оборудование по математике и методика
использования его в учебной работе
Обучение пользованию справочниками по математике, справочными таблицами и другой справочной литературой должно найти своё место при изучении математики в средней школе. Справочники необходимы по той причине, что для запоминания выбирается первостепенное, необходимое для изучения дальнейшего курса, ...
Понятие "эвристическая
технология" в психолого-педагогической литературе
Термин "эвристика" происходит от греческого heuresko - отыскиваю, открываю. В настоящее время используется несколько значений этого термина. Эвристика может пониматься как: 1) научно-прикладная дисциплина, изучающая творческую деятельность (в то же время следует признать, что основателей ...
Создание положительного эмоционального фона на уроке
Эмоциональный фон является важным фактором урока. Он возникает с момента ожидания учащимися урока физической культуры и существует на всем его протяжении. При этом эмоциональный настрой может изменяться по ходу урока в зависимости от самочувствия учащихся, проявляемого ими интереса к упражнению, в ...