Вопрос 4: Сформулировать достаточный признак равномерной сходимости функционального ряда - признак Вейерштрасса.
Ответ: Теорема. Пусть даны два ряда: функциональный
, элементами которого являются функции
, определенные на множестве
, и числовой положительный сходящийся ряд
. Тогда, если для всех
выполняется неравенство
, то функциональный ряд
равномерно и абсолютно сходится на множестве
.
Преподаватель: А теперь рассмотрим задание на исследование равномерной сходимости функционального ряда.
Пример №16 (№349 из [7], c комментариями преподавателя).
Показать, что ряд
сходится равномерно при всех действительных значениях
.
Решение
Данный ряд при любом значении
сходится по признаку Лейбница, поэтому его остаток оценивается с помощью неравенства ![]()
, т.е.
.
Так как неравенства
и
равносильны, то, взяв
, где
- какое-нибудь целое положительное число, которое удовлетворяет условию
, приходим к неравенству
. Итак, данный ряд сходится рав-номерно в промежутке
при всех
.
Ответ: Доказана равномерная сходимость для
R.
Пример №17 (№51 из [10], студент у доски с помощью преподавателя).
Исследовать на равномерную сходимость ряд
на любом конечном интервале.
Решение
Докажем, что каково бы ни было число
, данный ряд сходится равномерно и абсолютно в круге радиусом
, т.е.
.
Заданный ряд сходится при любом значении
, в частности, при
, получаем числовой ряд:
.
Исследуем его на абсолютную сходимость, применив признак Даламбера
. Так как
, то ряд
сходится, причем абсолютно.
Возьмем этот ряд в качестве мажорантного, по признаку Вейерштрасса равномерной сходимости функционального ряда
при
.
Образование, педагогика, воспитание:
Психологические и психофизиологические особенности
младших школьников
Тенденции развития психологических свойств такова: от большей слабости и инертности нервной системы в раннем возрасте к увеличению ее выносливости и подвижности по мере взросления. Это означает, что младшие школьники, особенно первоклассники, быстро достигают предела работоспособности, в очень мало ...
Сравнительный анализ программ учебно-воспитательного процесса в дошкольных
образовательных учреждениях
Разработанная в России стратегия построения государственных образовательных стандартов соответствует Международной конвенции о правах ребенка, опирается на положение Закона РФ "Об образовании". В отличие от школьных государственных образовательных стандартов, которые определяют: обязатель ...
История развития и становления
Идея проблемного обучения не нова. Величайшие педагоги прошлого всегда искали пути преобразования процесса учения в радостный процесс познания, развития умственных сил и способностей учащихся (Я. А. Коменский, Ж. Ж. Руссо, И. Г. Песталоцци, Ф. А. Дистервег, К. Д. Ушинский и др.). В XX столетии идеи ...