Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 15

Вопрос 4: Сформулировать достаточный признак равномерной сходимости функционального ряда - признак Вейерштрасса.

Ответ: Теорема. Пусть даны два ряда: функциональный , элементами которого являются функции , определенные на множестве, и числовой положительный сходящийся ряд . Тогда, если для всех выполняется неравенство , то функциональный ряд равномерно и абсолютно сходится на множестве .

Преподаватель: А теперь рассмотрим задание на исследование равномерной сходимости функционального ряда.

Пример №16 (№349 из [7], c комментариями преподавателя).

Показать, что ряд

сходится равномерно при всех действительных значениях .

Решение

Данный ряд при любом значении сходится по признаку Лейбница, поэтому его остаток оценивается с помощью неравенства , т.е.

.

Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, которое удовлетворяет условию , приходим к неравенству . Итак, данный ряд сходится рав-номерно в промежутке при всех .

Ответ: Доказана равномерная сходимость для R.

Пример №17 (№51 из [10], студент у доски с помощью преподавателя).

Исследовать на равномерную сходимость ряд

на любом конечном интервале.

Решение

Докажем, что каково бы ни было число , данный ряд сходится равномерно и абсолютно в круге радиусом , т.е. .

Заданный ряд сходится при любом значении , в частности, при , получаем числовой ряд: .

Исследуем его на абсолютную сходимость, применив признак Даламбера . Так как , то ряд сходится, причем абсолютно.

Возьмем этот ряд в качестве мажорантного, по признаку Вейерштрасса равномерной сходимости функционального ряда при .

Страницы: 10 11 12 13 14 15 16 17 18 19 20

Образование, педагогика, воспитание:

Дезонтогенез речевого развития детей при легкой степени умственной отсталости у детей
Становление речи умственно отсталого ребенка осуществляется своеобразно и с большим запозданием. Он позднее и менее активно вступает в эмоциональный контакт с матерью. Исследователи отмечают, что в возрасте около года звуковые комплексы, произносимые детьми, бедны и характеризуются сниженной эмоцио ...

Планирование как результат конструктивной деятельности педагога
Логическим итогом технологии конструирования образовательного процесса является материализация проекта педагогической деятельности в виде плана, плана-конспекта или конспекта в зависимости от опытности педагога. Сами подходы к планированию учебной и внеучебной деятельности школьников обусловлены су ...

Личностно-ориентированный урок: технология проведения
Урок – основной элемент образовательного процесса, но в системе личностно-ориентированного обучения меняется его функция, форма организации. Личностно ориентированный урок в отличие от традиционного в первую очередь изменяет тип взаимодействия «учитель-ученик». От командного стиля педагог переходит ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru