Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 12

Отсюда, - интервал сходимости заданного функционального ряда.

Определим сходимость ряда в точках и .

Если , то ряд примет вид - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, заданный функциональный ряд расходится в точке .

Если , то ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, исследуемый функциональный ряд расходится в точке .

Значит, - область абсолютной сходимости заданного функционального ряда. Ответ: .

Пример №14 (№15 из [10]).

Найти сумму ряда

.

Решение

По признаку Даламбера абсолютной сходимости функционального ряда имеем:

.

Если , т.е. , то заданный функциональный ряд сходится абсолютно на указанном интервале.

Если , т.е. , исследуемый функциональный ряд расходится.

При функциональный ряд примет вид 1+1+1+… - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, в точке исследуемый функциональный ряд расходится.

При функциональный ряд примет вид 1-1+1-1+… - числовой знакочередующийся ряд. Он расходится, так как ни одно из двух условий признака Лейбница не выполняется: а) ; б) . Значит, функциональный ряд в точке расходится. Значит, - область абсолютной сходимости заданного функционального ряда.

На области своей сходимости исследуемый ряд представляет собой сумму убывающей геометрической прогрессии. Сумму этой прогрессии найдем по формулам:

, где .

Тогда, при .

Ответ: при .

Страницы: 7 8 9 10 11 12 13 14 15 16 17

Образование, педагогика, воспитание:

Законодательная база в области образования
В Республике Корея право на образование гарантировано Конституцией. Существует также специальный закон об образовании, а также отдельные нормативно-правовые акты. Из них наибольший интерес представляют подзаконные акты и правительственные программы в области реформирования образования. С 1991 г. в ...

Методы и приемы формирования культурно-гигиенических навыков у детей младшего дошкольного возраста
В центре воспитательного процесса дошкольного образовательного учреждения находится ребёнок. По отношению к нему, как объекту воспитания, воспитатель выступает субъектом воспитательного процесса, воздействующим на личность с помощью специальных методов воспитания. Методы воспитания - это способы пе ...

Технологии обучения истории
В методической литературе на сегодняшний день довольно мало информации о новейших технологиях преподавания Автор настоящей работы приводит наиболее доступные данные. Технология - это совокупность форм, методов, приемов и средств, применяемых в какой-либо деятельности. (См. А.В. Хуторской "Мето ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru