Отсюда, - интервал сходимости заданного функционального ряда.
Определим сходимость ряда в точках и
.
Если , то ряд примет вид
- числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.
. Следовательно, заданный функциональный ряд расходится в точке
.
Если , то ряд примет вид
- числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.
. Следовательно, исследуемый функциональный ряд расходится в точке
.
Значит, - область абсолютной сходимости заданного функционального ряда. Ответ:
.
Пример №14 (№15 из [10]).
Найти сумму ряда
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда имеем:
.
Если , т.е.
, то заданный функциональный ряд сходится абсолютно на указанном интервале.
Если , т.е.
, исследуемый функциональный ряд расходится.
При функциональный ряд примет вид 1+1+1+… - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.
. Следовательно, в точке
исследуемый функциональный ряд расходится.
При функциональный ряд примет вид 1-1+1-1+… - числовой знакочередующийся ряд. Он расходится, так как ни одно из двух условий признака Лейбница не выполняется: а)
; б)
. Значит, функциональный ряд в точке
расходится. Значит,
- область абсолютной сходимости заданного функционального ряда.
На области своей сходимости исследуемый ряд представляет собой сумму убывающей геометрической прогрессии. Сумму этой прогрессии найдем по формулам:
, где
.
Тогда, при
.
Ответ: при
.
Образование, педагогика, воспитание:
Анализ программ и технологий
Основной целью воспитания ребенка является всестороннее и гармоничное развитие его личности. Физическое воспитание - неотъемлемая часть этого процесса. В обществе ведется активная пропаганда здорового образа жизни: отказ от вредных привычек, активный отдых и, конечно, занятия физкультурой, которой ...
Структура и классификация современного урока истории
Под структурой урока понимается сочетание определенных звеньев процесса обучения, обусловленное дидактической целью занятия и реализованное в конкретном типе урока. Структурные компоненты урока охарактеризованы ниже в порядке их использования в учебном процессе: 1. Организационный момент складывает ...
Здоровьесберегающие технологии в современной образовательной среде
Перед тем как рассмотреть здоровьесберегающие технологии, обратимся к понятию «здоровьесберегающее образование». Это образование, не вызывающее у субъектов образования (обучаемых и обучающих) специфических заболеваний, которые называются дидактогенией, выгоранием личности учителя, полураспадом за о ...