Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 12

Отсюда, - интервал сходимости заданного функционального ряда.

Определим сходимость ряда в точках и .

Если , то ряд примет вид - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, заданный функциональный ряд расходится в точке .

Если , то ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, исследуемый функциональный ряд расходится в точке .

Значит, - область абсолютной сходимости заданного функционального ряда. Ответ: .

Пример №14 (№15 из [10]).

Найти сумму ряда

.

Решение

По признаку Даламбера абсолютной сходимости функционального ряда имеем:

.

Если , т.е. , то заданный функциональный ряд сходится абсолютно на указанном интервале.

Если , т.е. , исследуемый функциональный ряд расходится.

При функциональный ряд примет вид 1+1+1+… - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, в точке исследуемый функциональный ряд расходится.

При функциональный ряд примет вид 1-1+1-1+… - числовой знакочередующийся ряд. Он расходится, так как ни одно из двух условий признака Лейбница не выполняется: а) ; б) . Значит, функциональный ряд в точке расходится. Значит, - область абсолютной сходимости заданного функционального ряда.

На области своей сходимости исследуемый ряд представляет собой сумму убывающей геометрической прогрессии. Сумму этой прогрессии найдем по формулам:

, где .

Тогда, при .

Ответ: при .

Страницы: 7 8 9 10 11 12 13 14 15 16 17

Образование, педагогика, воспитание:

Наблюдение за игровой деятельностью детей
Цель: выявление особенностей взаимодействия мальчиков и девочек в игре, предпочтения в выборе партнёра по игре, особенностей полоролевого поведения детей. Объектом наблюдения являлись действия детей в игре, выявлялись женские и мужские признаки и качества личности. В процессе наблюдения нами отмеча ...

Психолого-педагогические аспекты образования в высшей школе
В настоящее время нет, пожалуй, более спорной проблемы в педагогике и психологии высшей школы, чем проблема воспитания студентов. Вуз служит не только и может быть не столько для передачи специальных знаний, сколько для развития и воспроизведения особого культурного слоя, важнейшим элементом которо ...

Обучение в Австралии
Австралия в последние десятилетия вошла в число лидеров международного образовательного рынка. Обучение на «зеленом континенте» имеет много плюсов: английский в качестве государственного языка, высокий уровень жизни, возможность круглый год наслаждаться всеми прелестями теплого климата. Поэтому в э ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru