Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 8

При получим числовой положительный ряд . Это ряд Дирихле с . Известно, что если , то ряд расходится. Значит, функциональный ряд в точке расходится.

При получим числовой знакочередующийся ряд вида . Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е. и : .

Ряд, составленный из абсолютных величин элементов ряда , имеет вид и является расходящимся.

Значит, функциональный ряд сходится условно в точке x=1.

Итак, область сходимости исследуемого функционального ряда . Абсолютно ряд сходится на интервале .

Ответ: .

Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.

Пример №8 (№14 из, с комментариями преподавателя).

Найти сумму ряда:

.

Решение

По признаку Даламбера абсолютной сходимости функционального ряда можем записать:

.

Если , т.е. то функциональный ряд сходится абсолютно на интервале .

Если , т.е. , то исследуемый функциональный ряд расходится на указанных промежутках.

При функциональный ряд становится числовым положительным расходящимся рядом , так как не выполняется необходимое условие сходимости числового ряда, т.е. .

Значит, область абсолютной сходимости функционального ряда есть интервал .

Найдем сумму заданного функционального ряда на его области сходимости.

Если , то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с . Сумму ряда будем определять по формуле:

.

При сумма ряда .

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Образование, педагогика, воспитание:

Типологический отбор исследуемых
Допустим, необходимо изучить эффективность нового метода развития силы. Для эксперимента потребуется сформировать две группы исследуемых, предположим, по 10 человек. Однако судить об эффективности нового метода позволительно будет только в том случае, если удастся уравнять исходные уровни развития ...

Повышение компетентности педагогов в области интегрированного обучения детей с особыми образовательными потребностями в массовой школе
В Концепции модернизации российского образования на период до 2010 г. отмечается: «дети с ограниченными возможностями здоровья должны обеспечиваться медико-социальным сопровождением и специальными условиями для обучения в общеобразовательном ДОУ и школе по месту жительства». По статистическим данны ...

Генезис стиля
Предпосылки существования объективированных стилей создаются в процессе развития деятельности, отчуждения ее результатов, продуктов, средств от производителя. Условным началом формирования индивидуального стиля можно считать вступление субъекта в деятельность. Сразу же, еще до сколько-нибудь полног ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru