Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 8

При получим числовой положительный ряд . Это ряд Дирихле с . Известно, что если , то ряд расходится. Значит, функциональный ряд в точке расходится.

При получим числовой знакочередующийся ряд вида . Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е. и : .

Ряд, составленный из абсолютных величин элементов ряда , имеет вид и является расходящимся.

Значит, функциональный ряд сходится условно в точке x=1.

Итак, область сходимости исследуемого функционального ряда . Абсолютно ряд сходится на интервале .

Ответ: .

Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.

Пример №8 (№14 из, с комментариями преподавателя).

Найти сумму ряда:

.

Решение

По признаку Даламбера абсолютной сходимости функционального ряда можем записать:

.

Если , т.е. то функциональный ряд сходится абсолютно на интервале .

Если , т.е. , то исследуемый функциональный ряд расходится на указанных промежутках.

При функциональный ряд становится числовым положительным расходящимся рядом , так как не выполняется необходимое условие сходимости числового ряда, т.е. .

Значит, область абсолютной сходимости функционального ряда есть интервал .

Найдем сумму заданного функционального ряда на его области сходимости.

Если , то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с . Сумму ряда будем определять по формуле:

.

При сумма ряда .

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Образование, педагогика, воспитание:

Практическая деятельность по психофизическому развитию детей В ДОУ
Физическому развитию и здоровью отводятся ведущие позиции, поэтому для создания педагогической оздоровительной системы в любом дошкольном учреждении необходимо придерживаться следующих основных направлений: создать условия для двигательной деятельности, эмоционального, -интеллектуального, социально ...

Структура педагогической деятельности
Педагогическая деятельность имеет те же характеристики, что и любой другой вид человеческой деятельности. Это прежде всего целеположенность, мотивированность, предметность. Специфической характеристикой педагогической деятельности, по Н.В. Кузьминой, является ее продуктивность. Различают пять уровн ...

Формирование представлений о домашних животных у детей раннего возраста средствами дидактической игры
"Концепция дошкольного воспитания" (авторы В.В. Давыдов, В.А. Петровский и др.) - ориентируют педагогов на гуманизацию воспитательно-образовательного процесса детского сада через "…реализацию специфических возрастных возможностей психического развития дошкольников в соответствующих в ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru