При получим числовой положительный ряд
. Это ряд Дирихле с
. Известно, что если
, то ряд
расходится. Значит, функциональный ряд
в точке
расходится.
При получим числовой знакочередующийся ряд вида
. Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е.
и
:
.
Ряд, составленный из абсолютных величин элементов ряда , имеет вид
и является расходящимся.
Значит, функциональный ряд сходится условно в точке x=1.
Итак, область сходимости исследуемого функционального ряда . Абсолютно ряд сходится на интервале
.
Ответ: .
Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.
Пример №8 (№14 из, с комментариями преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
Если , т.е.
то функциональный ряд
сходится абсолютно на интервале
.
Если , т.е.
, то исследуемый функциональный ряд расходится на указанных промежутках.
При функциональный ряд становится числовым положительным расходящимся рядом
, так как не выполняется необходимое условие сходимости числового ряда, т.е.
.
Значит, область абсолютной сходимости функционального ряда есть интервал
.
Найдем сумму заданного функционального ряда на его области сходимости.
Если , то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с
. Сумму ряда будем определять по формуле:
.
При сумма ряда
.
Образование, педагогика, воспитание:
Разработка системы проблемных уроков по теме «Основной капитал предприятия»
Разработка проблемных уроков осуществляется на основе методов проблемно-развивающего обучения. Монологический метод Таблица 1 Структурный элемент урока План деятельности преподавателя План деятельности учащихся Время этапа урока 1. Актуализация имеющихся знаний Сообщить учащимся тему урока и план о ...
Понятие и сущность полоролевой социализации детей среднего дошкольного
возраста
Воспитание как процесс приобщения человека к историческому опыту в содержательной и целеполагающей основе всегда определяется ведущими потребностями общества. Изменение базовых социальных ориентиров неизбежно приводит к пересмотру и переоценке задач, направлений, форм организации воспитательной раб ...
Методы, способствующие развитию познавательной активности учащихся на
уроках биологии
Степень активности учащихся является реакцией, методы, и приемы работы преподавателя являются показателем его педагогического мастерства. Активными методами обучения следует называть те, которые максимально повышают уровень познавательной активности школьников, побуждают их к старательному учению. ...