При получим числовой положительный ряд
. Это ряд Дирихле с
. Известно, что если
, то ряд
расходится. Значит, функциональный ряд
в точке
расходится.
При получим числовой знакочередующийся ряд вида
. Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е.
и
:
.
Ряд, составленный из абсолютных величин элементов ряда , имеет вид
и является расходящимся.
Значит, функциональный ряд сходится условно в точке x=1.
Итак, область сходимости исследуемого функционального ряда . Абсолютно ряд сходится на интервале
.
Ответ: .
Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.
Пример №8 (№14 из, с комментариями преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
Если , т.е.
то функциональный ряд
сходится абсолютно на интервале
.
Если , т.е.
, то исследуемый функциональный ряд расходится на указанных промежутках.
При функциональный ряд становится числовым положительным расходящимся рядом
, так как не выполняется необходимое условие сходимости числового ряда, т.е.
.
Значит, область абсолютной сходимости функционального ряда есть интервал
.
Найдем сумму заданного функционального ряда на его области сходимости.
Если , то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с
. Сумму ряда будем определять по формуле:
.
При сумма ряда
.
Образование, педагогика, воспитание:
История введения инноватики в образование
Понятие «инноватика» появилось более 100 лет назад в культурологии и лингвистике при описании процессов культурной диффузии, когда феномен из одного культурного ареала проникал в другие. Первое наиболее полное описание инновационных процессов было представлено в начале XX в. экономистом И. Шумпетер ...
Личностно-ориентированный урок: технология проведения
Урок – основной элемент образовательного процесса, но в системе личностно-ориентированного обучения меняется его функция, форма организации. Личностно ориентированный урок в отличие от традиционного в первую очередь изменяет тип взаимодействия «учитель-ученик». От командного стиля педагог переходит ...
Правильная постановка задач на уроке
Нередко активность учащихся на уроке снижается из-за того, что учитель допускает ошибки при постановке задачи. Л.В. Вишнева выделяет наиболее типичные из них: 1. Учитель перечисляет упражнения, которые будут выполнять ученики на уроке, вместо того чтобы поставить задачу, которая должна быть решена. ...