При
получим числовой положительный ряд
. Это ряд Дирихле с
. Известно, что если
, то ряд
расходится. Значит, функциональный ряд
в точке
расходится.
При
получим числовой знакочередующийся ряд вида
. Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е.
и
:
.
Ряд, составленный из абсолютных величин элементов ряда
, имеет вид
и является расходящимся.
Значит, функциональный ряд
сходится условно в точке x=1.
Итак, область сходимости исследуемого функционального ряда
. Абсолютно ряд сходится на интервале
.
Ответ:
.
Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.
Пример №8 (№14 из, с комментариями преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
Если
, т.е.
то функциональный ряд
сходится абсолютно на интервале
.
Если
, т.е.
, то исследуемый функциональный ряд расходится на указанных промежутках.
При
функциональный ряд становится числовым положительным расходящимся рядом
, так как не выполняется необходимое условие сходимости числового ряда, т.е.
.
Значит, область абсолютной сходимости функционального ряда
есть интервал
.
Найдем сумму заданного функционального ряда на его области сходимости.
Если
, то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с
. Сумму ряда будем определять по формуле:
.
При
сумма ряда
.
Образование, педагогика, воспитание:
Общая характеристика индивидуальной речевой деятельности в концепции И.А.
Зимней
Внутренний механизм, управляющий видами речевой деятельности, это – Высшая интегративная вербально-коммуникативная функция человека (ВКФ), которой выражается единство сознания и деятельности индивида, как системная целостность способностей когнитивной, и языковой форм сознания. ВКФ – интегративная ...
Проблема отбора содержания экспериментальных уроков
Основная трудность, с которой сталкиваются учителя в школах при изучении исторических персоналий, - это отсутствие систематизированного исторического материала и методических рекомендаций. При отборе исторического материала мы старались опираться на литературу, доступную для школьных учителей. Нами ...
Определение понятия речевой деятельности
Речь человека – сложившаяся исторически в процессе материальной преобразующей деятельности людей форма общения, опосредствованная языком. Речь является деятельностью, в процессе которой люди общаются друг с другом при посредстве языка. С помощью речи (внутренней и внешней) осуществляется также чело ...