При
получим числовой положительный ряд
. Это ряд Дирихле с
. Известно, что если
, то ряд
расходится. Значит, функциональный ряд
в точке
расходится.
При
получим числовой знакочередующийся ряд вида
. Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е.
и
:
.
Ряд, составленный из абсолютных величин элементов ряда
, имеет вид
и является расходящимся.
Значит, функциональный ряд
сходится условно в точке x=1.
Итак, область сходимости исследуемого функционального ряда
. Абсолютно ряд сходится на интервале
.
Ответ:
.
Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.
Пример №8 (№14 из, с комментариями преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
Если
, т.е.
то функциональный ряд
сходится абсолютно на интервале
.
Если
, т.е.
, то исследуемый функциональный ряд расходится на указанных промежутках.
При
функциональный ряд становится числовым положительным расходящимся рядом
, так как не выполняется необходимое условие сходимости числового ряда, т.е.
.
Значит, область абсолютной сходимости функционального ряда
есть интервал
.
Найдем сумму заданного функционального ряда на его области сходимости.
Если
, то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с
. Сумму ряда будем определять по формуле:
.
При
сумма ряда
.
Образование, педагогика, воспитание:
Влияние ИЗО искусства на формирование полноценности речи
Развитие речи учащихся на уроках рассматривается нами с позиции неразрывной связи интеллекта, эмоциональной сферы и личности в целом. Коммуникативно-деятельностный подход к развитию речи, осуществляемый на этих уроках, предполагает учет структуры речевой деятельности, развитие различных ее видов. О ...
Неурочные формы внеклассной работы
Спортивные соревнования являются одной из самых интересных, увлекательных форм внеклассной работы по физическому воспитанию в начальной школе. Они содействуют привлечению учащихся к систематическим занятиям физическими упражнениями дома и в коллективе физкультуры, повышают физическую подготовленнос ...
Технологии обучения истории
В методической литературе на сегодняшний день довольно мало информации о новейших технологиях преподавания Автор настоящей работы приводит наиболее доступные данные. Технология - это совокупность форм, методов, приемов и средств, применяемых в какой-либо деятельности. (См. А.В. Хуторской "Мето ...