Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 8

При получим числовой положительный ряд . Это ряд Дирихле с . Известно, что если , то ряд расходится. Значит, функциональный ряд в точке расходится.

При получим числовой знакочередующийся ряд вида . Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е. и : .

Ряд, составленный из абсолютных величин элементов ряда , имеет вид и является расходящимся.

Значит, функциональный ряд сходится условно в точке x=1.

Итак, область сходимости исследуемого функционального ряда . Абсолютно ряд сходится на интервале .

Ответ: .

Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.

Пример №8 (№14 из, с комментариями преподавателя).

Найти сумму ряда:

.

Решение

По признаку Даламбера абсолютной сходимости функционального ряда можем записать:

.

Если , т.е. то функциональный ряд сходится абсолютно на интервале .

Если , т.е. , то исследуемый функциональный ряд расходится на указанных промежутках.

При функциональный ряд становится числовым положительным расходящимся рядом , так как не выполняется необходимое условие сходимости числового ряда, т.е. .

Значит, область абсолютной сходимости функционального ряда есть интервал .

Найдем сумму заданного функционального ряда на его области сходимости.

Если , то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с . Сумму ряда будем определять по формуле:

.

При сумма ряда .

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Образование, педагогика, воспитание:

Стилевые характеристики и личностные типологические особенности
Как связаны стилевые характеристики с личностными типологическими особенностями? Говоря о формировании стиля человека, мы так или иначе имеем в виду две исходные координаты — внутреннюю индивидуальную среду как источник детерминации стилевых свойств и внешние условия, "отвечающие" не толь ...

Использование видеометода в современном воспитательном процессе
Одним из важнейших направлений модернизации современного образования является обеспечение условий для развития индивидуальности ребёнка. Современная школа выбирает стратегическую идею – воспитание высоконравственной личности, гуманной, способной мыслить и понимать окружающий мир. В связи с этим в н ...

Практика диагностики и формирования культурно-гигиенических навыков у детей младшего дошкольного возраста
Исследовательская работа проводится в виде эксперимента с детьми младшей группы детского центра « Волшебный фонарик», г. Москвы, в течение июня по декабрь 2013 года. В работе принимали участие 10 детей в возрасте 3-4 лет. Нами были определены задачи экспериментальной части исследования: Изучить усл ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru