Если , то получается числовой положительный ряд вида
. Он является расходящимся, так как
, следовательно,
.
Если , то элементы исходного функционального ряда меньше членов суммы бесконечно убывающей геометрической прогрессии
. Для убывающей геометрической прогрессии
,
,
при
.
Значит, ряд сходится при
.
Следовательно, будет сходиться при и заданный функциональный ряд, т.е. областью сходимости является объединение интервалов -
.
Ответ: Область сходимости заданного функционального ряда - .
Первичное закрепление материала происходит при решении студентами у доски упражнений, подобных рассмотренным с преподавателем, к доске вызываются сразу 3-4 студента.
Пример №5 (№2 из, студент у доски с помощью преподавателя).
Найти область сходимости функционального ряда:
Решение
Определим формулу общего элемента заданного функционального ряда N.
По признаку Даламбера абсолютной сходимости функционального ряда имеем:
В соответствии с признаком Даламбера абсолютной сходимости функционального ряда, если , т.е.
, то заданный функциональный ряд сходится абсолютно.
При , т.е.
, исследуемый функциональный ряд расходится.
При x=3 функциональный ряд становится положительным числовым рядом вида . Этот ряд расходится, так как является гармоническим рядом
.
При х=-3 функциональный ряд становится знакочередующимся числовым рядом вида: .
По признаку Лейбница: а) ; б)
, так как
.
Значит, ряд сходится условно по признаку Лейбница.
Составим ряд из абсолютных величин членов ряда . Получим ряд
- это гармонический расходящийся ряд.
Значит, исходный функциональный ряд сходится абсолютно на интервале , а сходится условно на полуотрезке
.
Образование, педагогика, воспитание:
Понятие и структура межкультурной компетенции
Глобализация – это процесс возрастающего воздействия различных факторов международного значения (например, тесных экономических и политических связей, культурного и информационного обмена) на социальную действительность в отдельных странах. Суть глобализации заключается в расширении взаимосвязей и ...
Содержание обучения английскому языку как второму иностранному
Проблема родного языка неизменно возникает всякий раз при разработке методов обучения иностранному языку. Сложность этой проблемы нашла свое отражение в таких методических принципах обучения, как опора на родной язык, его учет или исключение из учебного процесса. Все речевые механизмы учащихся сфор ...
Омонимы в русском языке
В лексической системе русского языка есть слова, которые звучат одинаково, но имеют совершенно разные значения. Такие слова называют лексическими омонимами, а звуковое и грамматическое совпадение языковых единиц, которые семантически не связаны друг с другом называется омонимией. (Гр. – homos – оди ...