Если , то получается числовой положительный ряд вида
. Он является расходящимся, так как
, следовательно,
.
Если , то элементы исходного функционального ряда меньше членов суммы бесконечно убывающей геометрической прогрессии
. Для убывающей геометрической прогрессии
,
,
при
.
Значит, ряд сходится при
.
Следовательно, будет сходиться при и заданный функциональный ряд, т.е. областью сходимости является объединение интервалов -
.
Ответ: Область сходимости заданного функционального ряда - .
Первичное закрепление материала происходит при решении студентами у доски упражнений, подобных рассмотренным с преподавателем, к доске вызываются сразу 3-4 студента.
Пример №5 (№2 из, студент у доски с помощью преподавателя).
Найти область сходимости функционального ряда:
Решение
Определим формулу общего элемента заданного функционального ряда N.
По признаку Даламбера абсолютной сходимости функционального ряда имеем:
В соответствии с признаком Даламбера абсолютной сходимости функционального ряда, если , т.е.
, то заданный функциональный ряд сходится абсолютно.
При , т.е.
, исследуемый функциональный ряд расходится.
При x=3 функциональный ряд становится положительным числовым рядом вида . Этот ряд расходится, так как является гармоническим рядом
.
При х=-3 функциональный ряд становится знакочередующимся числовым рядом вида: .
По признаку Лейбница: а) ; б)
, так как
.
Значит, ряд сходится условно по признаку Лейбница.
Составим ряд из абсолютных величин членов ряда . Получим ряд
- это гармонический расходящийся ряд.
Значит, исходный функциональный ряд сходится абсолютно на интервале , а сходится условно на полуотрезке
.
Образование, педагогика, воспитание:
Экспериментальное исследование эффективности применения дидактических игр в
процессе обучения информатике
Планирование экспериментальной части данного исследования осуществлялось с учётом основных требований к логике и организации педагогического эксперимента: определили цель, гипотезу, задачи, методы эксперимента и т.д. Перейдём к их конкретному описанию. Целью экспериментальной части исследования яви ...
Современные подходы к организации наглядного метода
обучения
Проблема использования наглядности на уроках истории является «вечной». Всплеск интереса к этой теме в методической литературе и создание комплектов наглядных пособий для школы пришлись на вторую половину XX века (Н.И. Аппарович, Г.И. Годер, П.В. Гора, Г.М. Донской, Ф.П. Коровкин, Д.Н. Никифоров и ...
Выявление интереса у детей подготовительной к школе группы к играм с
элементами спорта
Констатирующий этап проводился с 11.09.10 по 12.10.12. Цель: выявить уровень развития быстроты у детей подготовительной к школе группы, уровень физической подготовленности игры в хоккей, выявить интерес у детей данной группы к играм с элементами спорта, выявить место хоккея в работе с детьми седьмо ...