Если , то получается числовой положительный ряд вида
. Он является расходящимся, так как
, следовательно,
.
Если , то элементы исходного функционального ряда меньше членов суммы бесконечно убывающей геометрической прогрессии
. Для убывающей геометрической прогрессии
,
,
при
.
Значит, ряд сходится при
.
Следовательно, будет сходиться при и заданный функциональный ряд, т.е. областью сходимости является объединение интервалов -
.
Ответ: Область сходимости заданного функционального ряда - .
Первичное закрепление материала происходит при решении студентами у доски упражнений, подобных рассмотренным с преподавателем, к доске вызываются сразу 3-4 студента.
Пример №5 (№2 из, студент у доски с помощью преподавателя).
Найти область сходимости функционального ряда:
Решение
Определим формулу общего элемента заданного функционального ряда N.
По признаку Даламбера абсолютной сходимости функционального ряда имеем:
В соответствии с признаком Даламбера абсолютной сходимости функционального ряда, если , т.е.
, то заданный функциональный ряд сходится абсолютно.
При , т.е.
, исследуемый функциональный ряд расходится.
При x=3 функциональный ряд становится положительным числовым рядом вида . Этот ряд расходится, так как является гармоническим рядом
.
При х=-3 функциональный ряд становится знакочередующимся числовым рядом вида: .
По признаку Лейбница: а) ; б)
, так как
.
Значит, ряд сходится условно по признаку Лейбница.
Составим ряд из абсолютных величин членов ряда . Получим ряд
- это гармонический расходящийся ряд.
Значит, исходный функциональный ряд сходится абсолютно на интервале , а сходится условно на полуотрезке
.
Образование, педагогика, воспитание:
Формирование устной речи у неслышащих детей
Как сказано выше слышащий ребенок, усваивая устную речь, располагает для этого определенной сенсорной базой (чувствительной основой), позволяющей ему воспринимать речь из вне и контролировать собственное произношение. При этом особо важная роль, как указывалось выше, принадлежит слуховому анализато ...
Задачи внеклассной работы по физическому воспитанию
Одним из видов внеклассной работы в школе является массовая физкультурная и спортивная работа. Задачи внеклассной работы: -содействовать школе в выполнении стоящих перед ней учебно-воспитательных задач; -содействовать укреплению здоровья, закаливанию организма, разностороннему физическому развитию ...
История «личностной компоненты» образования в отечественной педагогике
В конце XIX –начале XX веков в России получили определенное распространение идеи свободного воспитания – «первого варианта» индивидуально-ориентированной педагогики. У истоков российского варианта школы свободного воспитания стоял Л.Н. Толстой. Именно ему принадлежит разработка теоретических и прак ...