Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 6

Если , то получается числовой положительный ряд вида . Он является расходящимся, так как , следовательно, .

Если , то элементы исходного функционального ряда меньше членов суммы бесконечно убывающей геометрической прогрессии . Для убывающей геометрической прогрессии , , при .

Значит, ряд сходится при .

Следовательно, будет сходиться при и заданный функциональный ряд, т.е. областью сходимости является объединение интервалов - .

Ответ: Область сходимости заданного функционального ряда - .

Первичное закрепление материала происходит при решении студентами у доски упражнений, подобных рассмотренным с преподавателем, к доске вызываются сразу 3-4 студента.

Пример №5 (№2 из, студент у доски с помощью преподавателя).

Найти область сходимости функционального ряда:

Решение

Определим формулу общего элемента заданного функционального ряда N.

По признаку Даламбера абсолютной сходимости функционального ряда имеем:

В соответствии с признаком Даламбера абсолютной сходимости функционального ряда, если , т.е. , то заданный функциональный ряд сходится абсолютно.

При , т.е. , исследуемый функциональный ряд расходится.

При x=3 функциональный ряд становится положительным числовым рядом вида . Этот ряд расходится, так как является гармоническим рядом .

При х=-3 функциональный ряд становится знакочередующимся числовым рядом вида: .

По признаку Лейбница: а) ; б) , так как .

Значит, ряд сходится условно по признаку Лейбница.

Составим ряд из абсолютных величин членов ряда . Получим ряд - это гармонический расходящийся ряд.

Значит, исходный функциональный ряд сходится абсолютно на интервале , а сходится условно на полуотрезке .

Страницы: 1 2 3 4 5 6 7 8 9 10 11

Образование, педагогика, воспитание:

Инновационные процессы в России в конце 20 – начале 21 вв
Современные инновационные процессы в российском образовании обусловлены противоречиями, обострившимися на рубеже 70–80-х годов ХХ в., когда в отечественной школе с очевидностью стали проявляться признаки кризиса и застоя. Эти признаки обнаруживались в спаде интересов школьников к учебе, в упадке шк ...

Содержание и экспериментальное обоснование роли семейного физического воспитания в малокомплектной школе
На констатирующем этапе эксперимента мы провели диагностическую работу, которая состояла из двух частей: 1. Выявление потенциала семьи в формировании здорового смысла посредством традиционного семейного физического воспитания. 2. Изучение исходного уровня физической подготовленности школьников. Дан ...

Медико-педагогический контроль
Кроме работы по оказанию помощи педагогам, родителям, необходимо помнить и о функциях контроля за санитарно-гигиеническим состоянием мест пребывания детей, физической подготовленностью, уровнем физического, интеллектуального, эмоционально-нравственного развития. Для этого в дошкольном учреждении ор ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru