Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 4

исследовать его сходимость в точках и .

Решение

В точке получаем числовой положительный ряд

.

Исследуем полученный ряд на сходимость, применив признак Далам-бера сходимости положительного числового ряда:

,

так как , то числовой положительный ряд расходится. А значит, заданный функциональный ряд расходится в точке .

В точке получаем числовой положительный ряд:

.

Исследуем полученный ряд на сходимость, применив признак Даламбера сходимости положительного числового ряда:

,

так как , то числовой положительный ряд сходится. Следовательно, функциональный ряд сходится, причем абсолютно, в точке .

Ответ: Функциональный ряд сходится абсолютно при и расходится при . Пример №2 (№345 из, студент решает у доски самостоятельно). Дан функциональный ряд:

.

Исследовать его сходимость в точках , и .

Решение

При ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

При ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

При ряд примет вид . числовой положительный ряд. По признаку Даламбера сходимости числового положительного ряда имеем: , т.е. ряд сходится. Значит, исходный функциональный ряд сходится в точке абсолютно.

Ответ: Заданный функциональный ряд сходится абсолютно в точке и расходится в точках и .

Пример №3 (№1 из [10], с комментариями преподавателя).

Найти область сходимости функционального ряда:

.

Решение

I способ.

Страницы: 1 2 3 4 5 6 7 8 9

Образование, педагогика, воспитание:

Использование сказок в работе с детьми
Из многообразия средств выразительности в детском учреждении рекомендуется: · формировать у детей раннего возраста простейшие образно-выразительные умения (уметь имитировать характерные движения сказочных животных) · во время чтения сказки не следует делать детям замечания, призывать их сидеть тихо ...

Инновационные процессы в России в конце 20 – начале 21 вв
Современные инновационные процессы в российском образовании обусловлены противоречиями, обострившимися на рубеже 70–80-х годов ХХ в., когда в отечественной школе с очевидностью стали проявляться признаки кризиса и застоя. Эти признаки обнаруживались в спаде интересов школьников к учебе, в упадке шк ...

Проектная методика
Преподавание иностранных языков, являясь составной часть общей системы образования, подчиняется основным тенденциям развития этой системы. Наиболее очевидно это выражается в методах обучения. В последние два десятилетия в образовании формируется такая тенденция, как проективность. Это понятие было ...

Навигация по сайту

© 2019 Copyright www.ecsir.ru