Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 4

исследовать его сходимость в точках и .

Решение

В точке получаем числовой положительный ряд

.

Исследуем полученный ряд на сходимость, применив признак Далам-бера сходимости положительного числового ряда:

,

так как , то числовой положительный ряд расходится. А значит, заданный функциональный ряд расходится в точке .

В точке получаем числовой положительный ряд:

.

Исследуем полученный ряд на сходимость, применив признак Даламбера сходимости положительного числового ряда:

,

так как , то числовой положительный ряд сходится. Следовательно, функциональный ряд сходится, причем абсолютно, в точке .

Ответ: Функциональный ряд сходится абсолютно при и расходится при . Пример №2 (№345 из, студент решает у доски самостоятельно). Дан функциональный ряд:

.

Исследовать его сходимость в точках , и .

Решение

При ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

При ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

При ряд примет вид . числовой положительный ряд. По признаку Даламбера сходимости числового положительного ряда имеем: , т.е. ряд сходится. Значит, исходный функциональный ряд сходится в точке абсолютно.

Ответ: Заданный функциональный ряд сходится абсолютно в точке и расходится в точках и .

Пример №3 (№1 из [10], с комментариями преподавателя).

Найти область сходимости функционального ряда:

.

Решение

I способ.

Страницы: 1 2 3 4 5 6 7 8 9

Образование, педагогика, воспитание:

Особенности воспитательной системы и воспитательного процесса с осужденными в исправительном учреждении
Организация воспитательного процесса с осужденными их перевоспитание требует значительных усилий со стороны сотрудников учреждения участвующих в этом процессе. Существует необходимость применения особого подхода к преодолению внутреннего сопротивления воспитуемых. Главный признак личности преступив ...

Структура организаторской деятельности и ее особенности
Организаторская деятельность, будучи отнесенной к отдельному человеку, есть не что иное, как система взаимосвязанных действий (технологий), направленных на объединение групп людей для достижения общей цели. Особое место организаторская деятельность занимает в структуре целостной деятельности педаго ...

Формирование гражданской активности у учащихся школы надо много обучения
Несмотря на то, что ученики ШНО в наибольшей степени нуждаются в формировании гражданской активности, этому не уделяется никого внимания со стороны государства. Целью проведённых мной уроков, является повышение уровня гражданской активности у учеников ШНО. Без практической работы с учениками ШНО фо ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru