Теорема 2. Для того чтобы функциональный ряд
равномерно сходился на множестве X, необходимо и достаточно, чтобы
0,
N,
,
,
N и
выполнялось неравенство:
.
Доказательство
1) Составим разность частичных сумм функционального ряда
:
.
2) Если будут выполняться неравенства:
, то это означает, что последовательность частичных сумм функционального ряда
равномерно сходится на множестве Х. А по определению равномерной сходимости функционального ряда, исследуемый функциональный ряд будет сходиться на множестве Х.
Достаточный признак равномерной и абсолютной сходимости функционального ряда (признак Вейерштрасса)
Теорема 3. Пусть даны два ряда: функциональный
, элементами которого являются функции
, определенные на множестве Х, и числовой положительный сходящийся ряд
. Тогда, если для всех
выполняется неравенство
, то функциональный ряд
равномерно и абсолютно сходится на множестве Х.
Доказательство:
Пусть выполняются все условия теоремы.
Так как по условию теоремы числовой ряд
сходится, то в соответствии со свойством числового ряда, его остаток должен стремится к нулю, т.е.
или
.
Так как это положительный числовой ряд, то неравенство примет вид:
По условию теоремы
выполняется неравенство:
. Поэтому, при
выполняется и такое неравенство:
.
Если
, то неравенство примет вид:
(с учетом пункта 2). По свойству транзитивности
- это остаток положительного функционального ряда, стремящегося к нулю при
. Значит, функциональный ряд
будет сходиться по свойству рядов. Известно, что если ряд абсолютно сходится, то он просто сходится. Значит, функциональный ряд
сходится.
Образование, педагогика, воспитание:
Почленное
дифференцирование функциональных рядов
Теорема 7. Пусть последовательность функций , непрерывно дифференцируемых на , и последовательность их производных равномерно сходятся на , тогда предел последовательности непрерывно дифференцируемых функций , т.е. , непрерывно дифференцируем на указанном отрезке и верно равенство: или . Доказатель ...
Факторы, способствующие повышению активности у учащихся младшего школьного
возраста
Самостоятельные занятия В числе основных задач физического воспитания следует считать задачу, связанную с формированием у учащихся потребности в физическом самосовершенствовании. Проблема самостоятельных занятий физическими упражнениями учащихся рассматривается в педагогической литературе. Однако, ...
Понятие «готовность к школьному обучению»
Готовность дошкольника с нарушенным слухом к школьному обучению является одним из важных итогов его развития в дошкольный период детства. Наступает переломный момент, когда условия жизни и деятельности ребенка резко изменяются, складываются новые отношения со взрослыми и детьми, появляется ответств ...