Теорема 2. Для того чтобы функциональный ряд
равномерно сходился на множестве X, необходимо и достаточно, чтобы
0,
N,
,
,
N и
выполнялось неравенство:
.
Доказательство
1) Составим разность частичных сумм функционального ряда
:
.
2) Если будут выполняться неравенства:
, то это означает, что последовательность частичных сумм функционального ряда
равномерно сходится на множестве Х. А по определению равномерной сходимости функционального ряда, исследуемый функциональный ряд будет сходиться на множестве Х.
Достаточный признак равномерной и абсолютной сходимости функционального ряда (признак Вейерштрасса)
Теорема 3. Пусть даны два ряда: функциональный
, элементами которого являются функции
, определенные на множестве Х, и числовой положительный сходящийся ряд
. Тогда, если для всех
выполняется неравенство
, то функциональный ряд
равномерно и абсолютно сходится на множестве Х.
Доказательство:
Пусть выполняются все условия теоремы.
Так как по условию теоремы числовой ряд
сходится, то в соответствии со свойством числового ряда, его остаток должен стремится к нулю, т.е.
или
.
Так как это положительный числовой ряд, то неравенство примет вид:
По условию теоремы
выполняется неравенство:
. Поэтому, при
выполняется и такое неравенство:
.
Если
, то неравенство примет вид:
(с учетом пункта 2). По свойству транзитивности
- это остаток положительного функционального ряда, стремящегося к нулю при
. Значит, функциональный ряд
будет сходиться по свойству рядов. Известно, что если ряд абсолютно сходится, то он просто сходится. Значит, функциональный ряд
сходится.
Образование, педагогика, воспитание:
Музыкальное образование как важный компонент развития школьника
Разные виды искусства обладают специфическими средствами воздействия на человека. Музыка же имеет возможность воздействовать на ребенка на самых ранних этапах. Доказано, что даже внутриутробный период чрезвычайно важен для последующего развития человека: музыка, которую слушает мать, оказывает влия ...
Творческие игры как средство
формирования коммуникативных навыков учащихся
В этом пункте рассмотрим два вида игр – это ролевые игры и драматизацию. Урок иностранного языка рассматривается как социальное явление, где классная аудитория – это определенная социальная среда, в которой учитель и учащиеся вступают в определенные социальные отношения друг с другом, где учебный п ...
Когнитивно стилевой подход
Кстати, когда мы говорим о когнитивном стиле или о типе мышления, следует учитывать, что индивидуальный стиль окрашивает индивидуальную специфику и восприятия, и переработки, и воспроизведения той или иной информации. Каждый вышележащий уровень психического развития содержит в себе — в более развер ...