Теорема 2. Для того чтобы функциональный ряд
равномерно сходился на множестве X, необходимо и достаточно, чтобы
0,
N,
,
,
N и
выполнялось неравенство:
.
Доказательство
1) Составим разность частичных сумм функционального ряда
:
.
2) Если будут выполняться неравенства:
, то это означает, что последовательность частичных сумм функционального ряда
равномерно сходится на множестве Х. А по определению равномерной сходимости функционального ряда, исследуемый функциональный ряд будет сходиться на множестве Х.
Достаточный признак равномерной и абсолютной сходимости функционального ряда (признак Вейерштрасса)
Теорема 3. Пусть даны два ряда: функциональный
, элементами которого являются функции
, определенные на множестве Х, и числовой положительный сходящийся ряд
. Тогда, если для всех
выполняется неравенство
, то функциональный ряд
равномерно и абсолютно сходится на множестве Х.
Доказательство:
Пусть выполняются все условия теоремы.
Так как по условию теоремы числовой ряд
сходится, то в соответствии со свойством числового ряда, его остаток должен стремится к нулю, т.е.
или
.
Так как это положительный числовой ряд, то неравенство примет вид:
По условию теоремы
выполняется неравенство:
. Поэтому, при
выполняется и такое неравенство:
.
Если
, то неравенство примет вид:
(с учетом пункта 2). По свойству транзитивности
- это остаток положительного функционального ряда, стремящегося к нулю при
. Значит, функциональный ряд
будет сходиться по свойству рядов. Известно, что если ряд абсолютно сходится, то он просто сходится. Значит, функциональный ряд
сходится.
Образование, педагогика, воспитание:
Выявление уровня полоролевой социализации детей среднего дошкольного
возраста
Проанализировав теоретическую литературу по проблеме полоролевой социализации детей среднего дошкольного возраста, мы разработали методику эксперимента, который включал в себя три этапа: констатирующий, формирующий и контрольный. Эксперимент проводился в период сентябрь - май 2009г. Исследование пр ...
Дидактическая игра как основной метод воспитания сенсорной культуры детей младшего
дошкольного возраста
Могучим средством воспитания детей младшего дошкольного возраста является дидактическая игра и упражнения. Недаром этот возраст называют возрастом игры. Народная мудрость создала дидактическую игру, которая является для ребенка младшего дошкольного возраста наиболее подходящей формой обучения. Игра ...
Опыт реализации регионального компонента содержания общего образования
На основе рекомендации Межрегионального Координационного Совета Сибири, Омский комитет по образованию администрации области принял в декабре 1995 года решение о введение в качестве регионального комитета БУП по Омской области учебных предметов, экология, экономика, культурно-историческое наследие н ...