Золотая педагогика

Критерий Коши равномерной сходимости функционального ряда

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функционального ряда

Страница 1

Теорема 2. Для того чтобы функциональный ряд равномерно сходился на множестве X, необходимо и достаточно, чтобы 0, N, , , N и выполнялось неравенство:

.

Доказательство

1) Составим разность частичных сумм функционального ряда :

.

2) Если будут выполняться неравенства: , то это означает, что последовательность частичных сумм функционального ряда равномерно сходится на множестве Х. А по определению равномерной сходимости функционального ряда, исследуемый функциональный ряд будет сходиться на множестве Х.

Достаточный признак равномерной и абсолютной сходимости функционального ряда (признак Вейерштрасса)

Теорема 3. Пусть даны два ряда: функциональный , элементами которого являются функции , определенные на множестве Х, и числовой положительный сходящийся ряд . Тогда, если для всех выполняется неравенство , то функциональный ряд равномерно и абсолютно сходится на множестве Х.

Доказательство:

Пусть выполняются все условия теоремы.

Так как по условию теоремы числовой ряд сходится, то в соответствии со свойством числового ряда, его остаток должен стремится к нулю, т.е. или .

Так как это положительный числовой ряд, то неравенство примет вид:

По условию теоремы выполняется неравенство: . Поэтому, при выполняется и такое неравенство: .

Если , то неравенство примет вид: (с учетом пункта 2). По свойству транзитивности - это остаток положительного функционального ряда, стремящегося к нулю при . Значит, функциональный ряд будет сходиться по свойству рядов. Известно, что если ряд абсолютно сходится, то он просто сходится. Значит, функциональный ряд сходится.

Страницы: 1 2

Образование, педагогика, воспитание:

Игры с пальчиками
Пальчиковые игры побуждают малышей к творчеству и в том случае, когда ребенок придумывает к текстам свои, пусть даже не очень удачные движения, его следует хвалить и, если возможно, показать свои творческие достижения, например, папе или бабушке. Наибольшее внимание ребенка привлекают пальчиковые и ...

Виды и тип сказок
Существует самая разнообразная классификация сказок. По тематике и стилистике сказки можно разделить на несколько групп, но обычно выделяют три большие группы: 1. сказки о животных 2. волшебные сказки 3. бытовые (сатирические) сказки Сказки о животных Маленьких детей, как правило, привлекает мир жи ...

Дидактические возможности компьютерной инструментальной среды ЛогоМиры
«Лого – инструмент для познания и развития собственного мышления, и в этом отличие этой среды от систем программирования, ориентированных в первую очередь на обеспечение наиболее эффективного использования аппаратуры». Программная среда Лого (ЛогоМиры) была разработана и реализована под руководство ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru