Теорема 2. Для того чтобы функциональный ряд равномерно сходился на множестве X, необходимо и достаточно, чтобы
0,
N,
,
,
N и
выполнялось неравенство:
.
Доказательство
1) Составим разность частичных сумм функционального ряда :
.
2) Если будут выполняться неравенства: , то это означает, что последовательность частичных сумм функционального ряда
равномерно сходится на множестве Х. А по определению равномерной сходимости функционального ряда, исследуемый функциональный ряд будет сходиться на множестве Х.
Достаточный признак равномерной и абсолютной сходимости функционального ряда (признак Вейерштрасса)
Теорема 3. Пусть даны два ряда: функциональный , элементами которого являются функции
, определенные на множестве Х, и числовой положительный сходящийся ряд
. Тогда, если для всех
выполняется неравенство
, то функциональный ряд
равномерно и абсолютно сходится на множестве Х.
Доказательство:
Пусть выполняются все условия теоремы.
Так как по условию теоремы числовой ряд сходится, то в соответствии со свойством числового ряда, его остаток должен стремится к нулю, т.е.
или
.
Так как это положительный числовой ряд, то неравенство примет вид:
По условию теоремы выполняется неравенство:
. Поэтому, при
выполняется и такое неравенство:
.
Если , то неравенство примет вид:
(с учетом пункта 2). По свойству транзитивности
- это остаток положительного функционального ряда, стремящегося к нулю при
. Значит, функциональный ряд
будет сходиться по свойству рядов. Известно, что если ряд абсолютно сходится, то он просто сходится. Значит, функциональный ряд
сходится.
Образование, педагогика, воспитание:
Организация элективных курсов по математике
В настоящее время предлагается проводить элективные курсы начиная с 7 класса профильной школы. Группа учащихся создаётся из учащихся параллельных классов, возможно так же создание объединённых групп из учеников последовательных классов. Для успешного проведения элективного курса необходимо, по возм ...
Организация внеклассной работы
Общее руководство работой коллектива физической культуры возлагается на учителя физической культуры, а руководство кружком — на одного из учителей начальных классов. В кружок и коллектив физической культуры учащиеся вступают добровольно, для этого достаточно устного заявления. На общем собрании чле ...
Процесс развития познавательной деятельности
учащихся
Развитие учащихся - многомерный процесс, который зависит от особенностей их нервной системы, индивидуальных особенностей, воспитания. Поэтому показателей, по которым можно судить об уровне развития учащихся, несколько. Важнейшее из них – качество знаний и умение использовать их в новых учебных ситу ...