Золотая педагогика

Критерий Коши равномерной сходимости функционального ряда

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функционального ряда

Страница 1

Теорема 2. Для того чтобы функциональный ряд равномерно сходился на множестве X, необходимо и достаточно, чтобы 0, N, , , N и выполнялось неравенство:

.

Доказательство

1) Составим разность частичных сумм функционального ряда :

.

2) Если будут выполняться неравенства: , то это означает, что последовательность частичных сумм функционального ряда равномерно сходится на множестве Х. А по определению равномерной сходимости функционального ряда, исследуемый функциональный ряд будет сходиться на множестве Х.

Достаточный признак равномерной и абсолютной сходимости функционального ряда (признак Вейерштрасса)

Теорема 3. Пусть даны два ряда: функциональный , элементами которого являются функции , определенные на множестве Х, и числовой положительный сходящийся ряд . Тогда, если для всех выполняется неравенство , то функциональный ряд равномерно и абсолютно сходится на множестве Х.

Доказательство:

Пусть выполняются все условия теоремы.

Так как по условию теоремы числовой ряд сходится, то в соответствии со свойством числового ряда, его остаток должен стремится к нулю, т.е. или .

Так как это положительный числовой ряд, то неравенство примет вид:

По условию теоремы выполняется неравенство: . Поэтому, при выполняется и такое неравенство: .

Если , то неравенство примет вид: (с учетом пункта 2). По свойству транзитивности - это остаток положительного функционального ряда, стремящегося к нулю при . Значит, функциональный ряд будет сходиться по свойству рядов. Известно, что если ряд абсолютно сходится, то он просто сходится. Значит, функциональный ряд сходится.

Страницы: 1 2

Образование, педагогика, воспитание:

О содержании и форме богослужебных песнопений
В отборе канонических текстов для песнопений Всенощной и Литургии прослеживается ориентация на определённое содержание. Она позволяет выделить отдельные группы жанровых типов интонирования. Ведущее место среди них занимает славление. Славление есть высший, абсолютно бескорыстный вид молитвы, оно яв ...

Воспитание самостоятельности и активности
Главной задачей интеллектуальной готовности ребенка является формирование у ребенка определенных знаний и умений на основе включения его в активную учебную деятельность. В процессе решения этой задачи педагог использует разнообразные методы и приемы: объяснение, показ, вопросы, оценка и др. Формиро ...

Практические аспекты использования элементов хоккея как средства физического воспитания у детей старшего дошкольного возраста
Экспериментальная работа по реализации практических аспектов использования элементов хоккея в работе с детьми старшего дошкольного возраста в МДОУ №10 "Малютка" города Тамбова с 11.09.11. по 17.05.12. с детьми подготовительной к школе группы. В эксперименте участвовало18 детей, а именно: ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru