Докажем равномерность сходимости функционального ряда. Из неравенства
и, используя свойства модуля суммы двух действительных чисел (
) можно переписать это неравенство так:
.
По свойству транзитивности:
- условие равномерности сходимости функционального ряда на множестве Х.
Замечание. Положительный сходящийся числовой ряд, связанный с функциональным рядом, называется мажорантным или мажорирующим.
Пример №3: Доказать, что функциональный ряд
абсолютно и равномерно сходится на всей числовой прямой.
Решение
1) Так как
,
N,
R, то в качестве мажорантного ряда выберем
при
R.
2) Cравним общие элементы функционального и числового рядов:
, при
R. Следовательно,
сходится абсолютно и равномерно на R, так как
- положительный сходящийся ряд (ряд Дирихле с
) [4]. Замечание. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда.
Образование, педагогика, воспитание:
Организация элективных курсов по математике
В настоящее время предлагается проводить элективные курсы начиная с 7 класса профильной школы. Группа учащихся создаётся из учащихся параллельных классов, возможно так же создание объединённых групп из учеников последовательных классов. Для успешного проведения элективного курса необходимо, по возм ...
Сущность и специфика педагогической задачи
С незапамятных времен понятие "задача" используется и в теории, и в практике педагогики. Оно употребляется обычно для описания форм предъявления учебного материала и специальных учебных заданий. Педагогическую задачу надо понимать как систему особого рода, представляющую собой основную ед ...
Проблемная ситуация как основной элемент проблемного обучения
Проблемное обучение раскрывается через постановку (учителем) и разрешение (учеником) проблемного вопроса, задачи и ситуации. Проблемный вопрос предполагает поиск и разные варианты ответа. То есть заранее готовый ответ здесь неприемлем. Проблемная задача – это учебно-познавательная задача, вызывающа ...