Докажем равномерность сходимости функционального ряда. Из неравенства
и, используя свойства модуля суммы двух действительных чисел (
) можно переписать это неравенство так:
.
По свойству транзитивности:
- условие равномерности сходимости функционального ряда на множестве Х.
Замечание. Положительный сходящийся числовой ряд, связанный с функциональным рядом, называется мажорантным или мажорирующим.
Пример №3: Доказать, что функциональный ряд
абсолютно и равномерно сходится на всей числовой прямой.
Решение
1) Так как
,
N,
R, то в качестве мажорантного ряда выберем
при
R.
2) Cравним общие элементы функционального и числового рядов:
, при
R. Следовательно,
сходится абсолютно и равномерно на R, так как
- положительный сходящийся ряд (ряд Дирихле с
) [4]. Замечание. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда.
Образование, педагогика, воспитание:
Современные компьютерные технологии как форма работы с семьей, направленная на установление партнерских, доверительных отношений
Закон РФ «Об образовании» обязывает педагогов и родителей стать не только равноправными, но и равноответственными участниками образовательного процесса. В условиях, когда большинство семей озабочено решением проблем экономического выживания усилилась тенденция самоустранения многих родителей от реш ...
Игры, развивающие речевое дыхание
Хорошо поставленное речевое дыхание обеспечивает правильное произношение звуков, слов и фраз. Для того чтобы научиться выговаривать многие звуки, ребенок должен делать достаточно сильный вдох через рот. Ниже приведены упражнения, в которых ребенку в игровой форме предлагается подуть на различные пр ...
Научное исследование в педагогике
Без глубокого знания сложившегося состояния педагогической теории и практики невозможно это состояние изменить, прогнозировать развитие образовательной политики и науки об образовании и воспитании человека. Приобретается это знание в процессе специального организованных научно-педагогических исслед ...