Золотая педагогика

Критерий Коши равномерной сходимости функционального ряда

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функционального ряда

Страница 2

Докажем равномерность сходимости функционального ряда. Из неравенства и, используя свойства модуля суммы двух действительных чисел () можно переписать это неравенство так:

.

По свойству транзитивности: - условие равномерности сходимости функционального ряда на множестве Х.

Замечание. Положительный сходящийся числовой ряд, связанный с функциональным рядом, называется мажорантным или мажорирующим.

Пример №3: Доказать, что функциональный ряд абсолютно и равномерно сходится на всей числовой прямой.

Решение

1) Так как , N, R, то в качестве мажорантного ряда выберем при R.

2) Cравним общие элементы функционального и числового рядов: , при R. Следовательно, сходится абсолютно и равномерно на R, так как - положительный сходящийся ряд (ряд Дирихле с ) [4]. Замечание. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда.

Страницы: 1 2 

Образование, педагогика, воспитание:

Экспериментальное исследование предметно-развивающей среды как условия обогащения игры-драматизации в старшем дошкольном возрасте
Анализ психолого-педагогической литературы позволил нам предположить, что организация предметно-развивающей среды может рассматриваться как условие обогащения игры-драматизации детей старшего дошкольного возраста, если педагог: организует предметную среду для развития игровых замыслов детей; создае ...

Образование в США
Считается, что США – наилучший вариант для магистратуры и докторантуры. Многие американские университеты играют первую роль в исследовательских проектах, имеющих международное значение. Их уровень определяется отличной лабораторно-технической базой, легким доступом колледж всем мыслимым источникам ...

Законодательная база в области образования
В Республике Корея право на образование гарантировано Конституцией. Существует также специальный закон об образовании, а также отдельные нормативно-правовые акты. Из них наибольший интерес представляют подзаконные акты и правительственные программы в области реформирования образования. С 1991 г. в ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru