Докажем равномерность сходимости функционального ряда. Из неравенства
и, используя свойства модуля суммы двух действительных чисел (
) можно переписать это неравенство так:
.
По свойству транзитивности:
- условие равномерности сходимости функционального ряда на множестве Х.
Замечание. Положительный сходящийся числовой ряд, связанный с функциональным рядом, называется мажорантным или мажорирующим.
Пример №3: Доказать, что функциональный ряд
абсолютно и равномерно сходится на всей числовой прямой.
Решение
1) Так как
,
N,
R, то в качестве мажорантного ряда выберем
при
R.
2) Cравним общие элементы функционального и числового рядов:
, при
R. Следовательно,
сходится абсолютно и равномерно на R, так как
- положительный сходящийся ряд (ряд Дирихле с
) [4]. Замечание. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда.
Образование, педагогика, воспитание:
Игровые технологии в младшем школьном возрасте
Игровые технологии применяются на уроках как в начальной школе, так и в среднем и старшем звене. Но в нашей работе мы рассмотрим подробно игровые технологии в младшем школьном возрасте. Для младшего школьного возраста характерны яркость и непосредственность восприятия, легкость вхождения в образы. ...
Оптимальная загруженность учащихся на уроке
Оптимальная загруженность учащихся на уроке обеспечивается рядом организационно-педагогических мер: устранением ненужных пауз, осуществлением постоянного контроля за учащимися, максимальным включением в учебную деятельность всех без исключения учащихся и др. Устранение ненужных пауз. Часто можно на ...
Содержание подготовки детей к школе
Готовность к обучению в школе предполагает необходимый уровень физического развития ребенка, позволяющий ему быстро адаптироваться к школьным нагрузкам: увеличению продолжительности уроков и их количеству, отсутствию дневного сна, иному режиму питания и т. д. Нагрузка на уроках в школе предполагает ...