Докажем равномерность сходимости функционального ряда. Из неравенства и, используя свойства модуля суммы двух действительных чисел (
) можно переписать это неравенство так:
.
По свойству транзитивности: - условие равномерности сходимости функционального ряда на множестве Х.
Замечание. Положительный сходящийся числовой ряд, связанный с функциональным рядом, называется мажорантным или мажорирующим.
Пример №3: Доказать, что функциональный ряд абсолютно и равномерно сходится на всей числовой прямой.
Решение
1) Так как ,
N,
R, то в качестве мажорантного ряда выберем
при
R.
2) Cравним общие элементы функционального и числового рядов: , при
R. Следовательно,
сходится абсолютно и равномерно на R, так как
- положительный сходящийся ряд (ряд Дирихле с
) [4]. Замечание. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда.
Образование, педагогика, воспитание:
Проблема сохранения здоровья подрастающего поколения
Конец XX столетия ознаменован целым комплексом глобальных изменений в социальной, экономической и духовной сферах общества, утратой ранее значимых ценностей и возникновением новых, формированием новой философии жизни. Человеческое сообщество захлестывает ускоряющийся динамизм социальных процессов, ...
Проблемная ситуация как основной элемент проблемного обучения
Проблемное обучение раскрывается через постановку (учителем) и разрешение (учеником) проблемного вопроса, задачи и ситуации. Проблемный вопрос предполагает поиск и разные варианты ответа. То есть заранее готовый ответ здесь неприемлем. Проблемная задача – это учебно-познавательная задача, вызывающа ...
Игры с использованием обобщающих слов
Общая цель для всех игр этого раздела – учить детей понимать обобщающие слова и использовать их в своей речи. Важно
, играя в эти игры, делать акцент на обобщающие слова: «Все это мебель (посуда, одежда и т.д.). Покажи где мебель (посуда, одежда и т.д.). Скажи – мебель (посуда, одежда и т.д.)». Или ...