Докажем равномерность сходимости функционального ряда. Из неравенства
и, используя свойства модуля суммы двух действительных чисел (
) можно переписать это неравенство так:
.
По свойству транзитивности:
- условие равномерности сходимости функционального ряда на множестве Х.
Замечание. Положительный сходящийся числовой ряд, связанный с функциональным рядом, называется мажорантным или мажорирующим.
Пример №3: Доказать, что функциональный ряд
абсолютно и равномерно сходится на всей числовой прямой.
Решение
1) Так как
,
N,
R, то в качестве мажорантного ряда выберем
при
R.
2) Cравним общие элементы функционального и числового рядов:
, при
R. Следовательно,
сходится абсолютно и равномерно на R, так как
- положительный сходящийся ряд (ряд Дирихле с
) [4]. Замечание. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда.
Образование, педагогика, воспитание:
Цели современного образования. Современные образовательные парадигмы
Учебные цели Выявление мнений различных социальных групп применительно к целям высшего образования. Изучение сущности традиционной и гуманистической образовательных парадигм. Определение своего места в парадигмальном пространстве. Отводимое время – 2 часа Структура занятия Вступительное слово. Ввод ...
Проблемы социализации детей в педагогике и психологии
Социальная психология понимает социализацию как процесс, обеспечивающий включение в ту или иную социальную группу или общность. Социализация представляет собой развитие человека на протяжении всей его жизни во взаимодействии с окружающей средой, в процессе которого он усваивает социальный опыт и ак ...
Пути и способы объяснения грамматики
Овладение грамматическими средствами должно достигать уровня навыка и проявляться в речи на уровне вторичного творческого уровня. Процесс объяснения соответствует первому этапу формирования грамматических навыков и умений — этапу создания ориентировочной основы действия. Основу для создания системы ...