Пример№30 (№ 343 из [7], с комментариями преподавателя).
Можно ли к ряду
применить теорему о почленном дифференцировании рядов?
Решение
Известно, что почленное дифференцирование функционального ряда возможно, если члены ряда и их производные непрерывны, а сам ряд и ряд, составленный из производных, сходятся в данном промежутке равномерно.
Сравним исследуемый функциональный ряд с функциональным рядом
при любом фиксированном
.
Предварительно заметим, что функциональный ряд равномерно и абсолютно сходится при
R в соответствии с признаком Вейерштрасса.
Действительно, при R справедливо неравенство
. А положительный числовой ряд
является сходящимся. Это ряд Дирихле (или обобщенный гармонический ряд с
).
Обозначим общие элементы сравниваемых рядов
Так как при
и
- бесконечно малые величины, то
. В соответствии со вторым признаком сравнения рядов, так как существует конечный, отличный от нуля предел
, то оба ряда
и
одновременно сходятся или одновременно расходятся.
Но ряд абсолютно и равномерно сходится для
R, значит, функциональный ряд
сходится равномерно и абсолютно при
. Кроме того, члены ряда - непрерывные функции при
R.
Найдем производную общего элемента функционального ряда
:
.
Ряд, составленный из производных членов исходного функционального ряда, имеет вид:
.
Все элементы записанного ряда представляют собой непрерывные функции на R.
Докажем, что ряд равномерно и абсолютно сходится на R.
Очевидно, что для R выполняется следующие неравенства:
. Но числовой положительный ряд
сходится, так как является обобщенным гармоническим рядом (ряд Дирихле) с
. В соответствии с признаком Вейерштрасса, будет равномерно и аболютно сходиться ряд
при
R. А это ряд, составленный из производных чледов исследуемого функционального ряда.
Образование, педагогика, воспитание:
Использование познавательных книг математического содержания и рабочих
тетрадей в логико-математическом развитии дошкольников
На протяжении XX в. активно разрабатывались вопросы использования книг с математическим содержанием и рабочих тетрадей с целью обогащения математических представлений дошкольников (Ф. Н. Блехер, 3. А. Михайлова, Л. Г. Петерсон, Е. Я. Фортунатова, Л. К. Шлегер и др.). Условно можно выделить нескольк ...
Особенности воспитательной системы и
воспитательного процесса с осужденными в исправительном учреждении
Организация воспитательного процесса с осужденными их перевоспитание требует значительных усилий со стороны сотрудников учреждения участвующих в этом процессе. Существует необходимость применения особого подхода к преодолению внутреннего сопротивления воспитуемых. Главный признак личности преступив ...
Факторы становления имиджа педагога
Фактор (от лат. factor – делающий, производящий) – это причина, движущая сила какого-либо процесса, определяющая его характер или отдельные его черты. Как и любая деятельность, деятельность по созданию имиджа начинается с мотива, движущей силой формирования имиджа, и определяется им. В основе деяте ...