Пример№30 (№ 343 из [7], с комментариями преподавателя).
Можно ли к ряду
применить теорему о почленном дифференцировании рядов?
Решение
Известно, что почленное дифференцирование функционального ряда возможно, если члены ряда и их производные непрерывны, а сам ряд и ряд, составленный из производных, сходятся в данном промежутке равномерно.
Сравним исследуемый функциональный ряд с функциональным рядом
при любом фиксированном
.
Предварительно заметим, что функциональный ряд равномерно и абсолютно сходится при
R в соответствии с признаком Вейерштрасса.
Действительно, при R справедливо неравенство
. А положительный числовой ряд
является сходящимся. Это ряд Дирихле (или обобщенный гармонический ряд с
).
Обозначим общие элементы сравниваемых рядов
Так как при
и
- бесконечно малые величины, то
. В соответствии со вторым признаком сравнения рядов, так как существует конечный, отличный от нуля предел
, то оба ряда
и
одновременно сходятся или одновременно расходятся.
Но ряд абсолютно и равномерно сходится для
R, значит, функциональный ряд
сходится равномерно и абсолютно при
. Кроме того, члены ряда - непрерывные функции при
R.
Найдем производную общего элемента функционального ряда
:
.
Ряд, составленный из производных членов исходного функционального ряда, имеет вид:
.
Все элементы записанного ряда представляют собой непрерывные функции на R.
Докажем, что ряд равномерно и абсолютно сходится на R.
Очевидно, что для R выполняется следующие неравенства:
. Но числовой положительный ряд
сходится, так как является обобщенным гармоническим рядом (ряд Дирихле) с
. В соответствии с признаком Вейерштрасса, будет равномерно и аболютно сходиться ряд
при
R. А это ряд, составленный из производных чледов исследуемого функционального ряда.
Образование, педагогика, воспитание:
Методика формирования морфологического строя речи
Ученые-методисты рекомендуют учителям проводить работу над закреплением грамматических моделей систематически, на каждом уроке и обязательно включать в домашние задания во всех классах. Изучение грамматических форм чаще всего выделяется, как самостоятельная часть урока, но в некоторых случаях может ...
Этапы решения педагогических задач
Рассматривая процедуру решения педагогической задачи, необходимо исходить из того, что ее цель достигается в результате решения частных познавательных и практических задач. Это этапы решения педагогической задачи в целом: 1) постановка педагогической задачи на основе анализа ситуации и конкретных у ...
Структура педагогической деятельности
Прежде, чем приступить к рассмотрению сущности педагогических инноваций, методов их выявления и изучения, необходимо проанализировать структуру педагогической деятельности и определить, какое место занимает в ней инновационная деятельность учителя. Современные исследования Н.В. Кузьмина, В.А. Сласт ...