Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 22

Пример№30 (№ 343 из [7], с комментариями преподавателя).

Можно ли к ряду

применить теорему о почленном дифференцировании рядов?

Решение

Известно, что почленное дифференцирование функционального ряда возможно, если члены ряда и их производные непрерывны, а сам ряд и ряд, составленный из производных, сходятся в данном промежутке равномерно.

Сравним исследуемый функциональный ряд с функциональным рядом при любом фиксированном .

Предварительно заметим, что функциональный ряд равномерно и абсолютно сходится при R в соответствии с признаком Вейерштрасса.

Действительно, при R справедливо неравенство . А положительный числовой ряд является сходящимся. Это ряд Дирихле (или обобщенный гармонический ряд с ).

Обозначим общие элементы сравниваемых рядов Так как при и - бесконечно малые величины, то . В соответствии со вторым признаком сравнения рядов, так как существует конечный, отличный от нуля предел , то оба ряда и одновременно сходятся или одновременно расходятся.

Но ряд абсолютно и равномерно сходится для R, значит, функциональный ряд сходится равномерно и абсолютно при . Кроме того, члены ряда - непрерывные функции при R.

Найдем производную общего элемента функционального ряда

: .

Ряд, составленный из производных членов исходного функционального ряда, имеет вид:

.

Все элементы записанного ряда представляют собой непрерывные функции на R.

Докажем, что ряд равномерно и абсолютно сходится на R.

Очевидно, что для R выполняется следующие неравенства: . Но числовой положительный ряд сходится, так как является обобщенным гармоническим рядом (ряд Дирихле) с . В соответствии с признаком Вейерштрасса, будет равномерно и аболютно сходиться ряд при R. А это ряд, составленный из производных чледов исследуемого функционального ряда.

Страницы: 17 18 19 20 21 22 23 24 25 26 27

Образование, педагогика, воспитание:

Повышение компетентности педагогов в области интегрированного обучения детей с особыми образовательными потребностями в массовой школе
В Концепции модернизации российского образования на период до 2010 г. отмечается: «дети с ограниченными возможностями здоровья должны обеспечиваться медико-социальным сопровождением и специальными условиями для обучения в общеобразовательном ДОУ и школе по месту жительства». По статистическим данны ...

Порядок сдачи зачета по преддипломной практике
Практика завершается зачетом (с оценкой) на кафедре. Зачет должен быть сдан студентом в течение десяти дней с момента окончания практики. Комиссия, принимающая зачет, при выведении итоговой оценки руководствуется следующим: отзывом руководителя практики на предприятии (организа-ции); качеством отве ...

Варианты решения и постановки проблемы
Существуют различные варианты постановки и решения проблемы. 1. Проблему решает педагог Педагог ставит проблему или проблемы, и сам их решает, излагая лекционный материал. При такой форме проведения занятия учащиеся внешне пассивны, но внутри каждого из них могут интенсивно протекать процессы поним ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru