Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 22

Пример№30 (№ 343 из [7], с комментариями преподавателя).

Можно ли к ряду

применить теорему о почленном дифференцировании рядов?

Решение

Известно, что почленное дифференцирование функционального ряда возможно, если члены ряда и их производные непрерывны, а сам ряд и ряд, составленный из производных, сходятся в данном промежутке равномерно.

Сравним исследуемый функциональный ряд с функциональным рядом при любом фиксированном .

Предварительно заметим, что функциональный ряд равномерно и абсолютно сходится при R в соответствии с признаком Вейерштрасса.

Действительно, при R справедливо неравенство . А положительный числовой ряд является сходящимся. Это ряд Дирихле (или обобщенный гармонический ряд с ).

Обозначим общие элементы сравниваемых рядов Так как при и - бесконечно малые величины, то . В соответствии со вторым признаком сравнения рядов, так как существует конечный, отличный от нуля предел , то оба ряда и одновременно сходятся или одновременно расходятся.

Но ряд абсолютно и равномерно сходится для R, значит, функциональный ряд сходится равномерно и абсолютно при . Кроме того, члены ряда - непрерывные функции при R.

Найдем производную общего элемента функционального ряда

: .

Ряд, составленный из производных членов исходного функционального ряда, имеет вид:

.

Все элементы записанного ряда представляют собой непрерывные функции на R.

Докажем, что ряд равномерно и абсолютно сходится на R.

Очевидно, что для R выполняется следующие неравенства: . Но числовой положительный ряд сходится, так как является обобщенным гармоническим рядом (ряд Дирихле) с . В соответствии с признаком Вейерштрасса, будет равномерно и аболютно сходиться ряд при R. А это ряд, составленный из производных чледов исследуемого функционального ряда.

Страницы: 17 18 19 20 21 22 23 24 25 26 27

Образование, педагогика, воспитание:

Анализ профессионального образа педагога на примере средней общеобразовательной школы
Учитывая, что не каждый педагог целенаправленно задумывается о формировании собственного профессионального имиджа, следует при исследовании акцентировать внимание педагогов на определенные высказывания, касающихся восприятия учащимися некоторых характеристик личности педагога. Суждения, представлен ...

История становления и развития музыки православной церкви на Украине и в России
Вопросам истории церковного пения в России и на Украине посвящён ряд работ, созданных в большинстве своём в XIX , начале ХХ веков. Это исследования Д. Аллеманова, В. Металлова, А. Преображенского, Д. Разумовского, Н. Финдейзена. Во второй половине ХХ века эта сфера музыкальной культуры рассматривал ...

Упражнения, способствующие развитию мелкой моторики
Прищепки Можно использовать следующие упражнения с прищепками: «Ежик», «Елочка», «Солнышко» - к силуэтам ежика, елочки, солнышка, сделанных из картона, дети прицепляют колючки и лучики. Для закрепления цветаможно использовать разноцветные силуэты и соответствующие им по цвету прищепки. (Рис.43) Про ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru