Пример№30 (№ 343 из [7], с комментариями преподавателя).
Можно ли к ряду
применить теорему о почленном дифференцировании рядов?
Решение
Известно, что почленное дифференцирование функционального ряда возможно, если члены ряда и их производные непрерывны, а сам ряд и ряд, составленный из производных, сходятся в данном промежутке равномерно.
Сравним исследуемый функциональный ряд с функциональным рядом
при любом фиксированном
.
Предварительно заметим, что функциональный ряд равномерно и абсолютно сходится при
R в соответствии с признаком Вейерштрасса.
Действительно, при R справедливо неравенство
. А положительный числовой ряд
является сходящимся. Это ряд Дирихле (или обобщенный гармонический ряд с
).
Обозначим общие элементы сравниваемых рядов
Так как при
и
- бесконечно малые величины, то
. В соответствии со вторым признаком сравнения рядов, так как существует конечный, отличный от нуля предел
, то оба ряда
и
одновременно сходятся или одновременно расходятся.
Но ряд абсолютно и равномерно сходится для
R, значит, функциональный ряд
сходится равномерно и абсолютно при
. Кроме того, члены ряда - непрерывные функции при
R.
Найдем производную общего элемента функционального ряда
:
.
Ряд, составленный из производных членов исходного функционального ряда, имеет вид:
.
Все элементы записанного ряда представляют собой непрерывные функции на R.
Докажем, что ряд равномерно и абсолютно сходится на R.
Очевидно, что для R выполняется следующие неравенства:
. Но числовой положительный ряд
сходится, так как является обобщенным гармоническим рядом (ряд Дирихле) с
. В соответствии с признаком Вейерштрасса, будет равномерно и аболютно сходиться ряд
при
R. А это ряд, составленный из производных чледов исследуемого функционального ряда.
Образование, педагогика, воспитание:
Разработка плана исследования особенностей образовательной сети школ г.
Березовского
В настоящий момент для введения профильного образования у школ г. Березовского отсутствует информированность об его внедрении. Школы не против того, чтобы ввести профильное обучение. Объектом исследования является сегодняшнее состояние образовательных учреждений. Предметом исследования являются: 1) ...
Особенности саморегуляции одаренного ребенка
"Безумен тот, кто, не умея управлять собою, хочет управлять другими", - сказал Публий Сир. Здесь уместны и слова Гете: "Умен не тот, кто много знает, а тот, кто знает самого себя" Под саморегуляцией в психологии понимается способность человека произвольно управлять своей деятель ...
Использование видеометода в современном учебном процессе
В современной школе значительно расширился арсенал средств обучения, повседневно применяемых учителем в учебно-воспитательной работе. Педагогический принцип наглядности обучения требует постоянного совершенствования средств обучения, использования в школе наглядных пособий, соответствующих уровню р ...