Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 22

Пример№30 (№ 343 из [7], с комментариями преподавателя).

Можно ли к ряду

применить теорему о почленном дифференцировании рядов?

Решение

Известно, что почленное дифференцирование функционального ряда возможно, если члены ряда и их производные непрерывны, а сам ряд и ряд, составленный из производных, сходятся в данном промежутке равномерно.

Сравним исследуемый функциональный ряд с функциональным рядом при любом фиксированном .

Предварительно заметим, что функциональный ряд равномерно и абсолютно сходится при R в соответствии с признаком Вейерштрасса.

Действительно, при R справедливо неравенство . А положительный числовой ряд является сходящимся. Это ряд Дирихле (или обобщенный гармонический ряд с ).

Обозначим общие элементы сравниваемых рядов Так как при и - бесконечно малые величины, то . В соответствии со вторым признаком сравнения рядов, так как существует конечный, отличный от нуля предел , то оба ряда и одновременно сходятся или одновременно расходятся.

Но ряд абсолютно и равномерно сходится для R, значит, функциональный ряд сходится равномерно и абсолютно при . Кроме того, члены ряда - непрерывные функции при R.

Найдем производную общего элемента функционального ряда

: .

Ряд, составленный из производных членов исходного функционального ряда, имеет вид:

.

Все элементы записанного ряда представляют собой непрерывные функции на R.

Докажем, что ряд равномерно и абсолютно сходится на R.

Очевидно, что для R выполняется следующие неравенства: . Но числовой положительный ряд сходится, так как является обобщенным гармоническим рядом (ряд Дирихле) с . В соответствии с признаком Вейерштрасса, будет равномерно и аболютно сходиться ряд при R. А это ряд, составленный из производных чледов исследуемого функционального ряда.

Страницы: 17 18 19 20 21 22 23 24 25 26 27

Образование, педагогика, воспитание:

Методические рекомендации по подбору дидактических игр и руководство ими
Подбор дидактических игр для обучения детей математике проводится в соответствии с программными требованиями. Каждая дидактическая игра должна быть направлена на решение той или иной учебной задачи. При подборе игр необходимо учитывать особенности участия в них детей, интерес к различным играм и уп ...

Актуальность профильного обучения
Профильное обучение имеет вековую историю, но и в настоящее время оно не потеряло своей актуальности, так как: 1. Профилизация обучения в старших классах соответствует структуре образовательных и жизненных установок большинства старшеклассников (социологические исследования показывают: больше 70% ш ...

Понятие предметно-развивающий среды и ее влияние на развитие игры-драматизации в старшем дошкольном возрасте
Проблема среды рассматривалась в трудах М.Я. Басова, П.П. Блонского, А.Б. Залкина и других. Уже в 1927 году ставится вопрос о роли среды в процессе развития ребенка на первом педагогическом съезде, где были сделаны следующие выводы: Среда является лишь фактором, содействующим процессу развертывания ...

Навигация по сайту

© 2023 Copyright www.ecsir.ru