Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 26

Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке .

Кроме того, члены заданного функционального ряда являются непрерывными функциями R.

Найдем производную общего члена заданного функционального ряда: . Исследуем функциональный ряд на абсолютную и равномерную сходимость. Для можно найти такое , что . По признаку Даламбера сходимости числовых рядов имеем: , так как , то числовой ряд сходится абсолютно.

Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд сходится равномерно и абсолютно при .

Следовательно, заданный функциональный ряд можно почленно продифференцировать.

Продифференцируем почленно заданный функциональный ряд и получим такой функциональный ряд:

.

Полученный ряд при представляет собой сумму убывающей геометрической прогрессии с .

Тогда и при .

Итак, сумма ряда при , т.е. .

Функциональный ряд равномерно и абсолютно сходится при , и функция непрерывна при . Значит, ряд можно почленно интегрировать. Проинтегрировав в пределах от до , находим

при .

Ответ: при .

В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.

Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.

Домашнее задание: Практическое занятие №14 из [9].

Ниже приведены решенные номера домашнего задания:

Пример №36 (№95 из [10]).

Можно ли к ряду

Страницы: 21 22 23 24 25 26 27 28 29 30 31

Образование, педагогика, воспитание:

Художественная литература как средство воспитания чувства юмора
Если произведение адресовано ребенку, у которого все особенное: восприятие, чувства, память, речь, круг знаний и интересов, объем опыта, то литература должна быть соответствующей: интересной, динамичной и, конечно же, нравственной. Книга, обращенная к детям, должна учитывать их интересы, пристрасти ...

Организация работы по взаимодействию с родителями
Проблему воспитания, развития и формирования здорового ребенка невозможно решить в полной мере без активного участия в этом родителей. Поэтому до сведения всех специалистов ДОУ доводятся особенности содержания работы с родителями по оздоровлению, развитию и воспитанию детей в учреждении (в зависимо ...

Социально-педагогическая программа коррекции детско-родительских отношений
Механизмы интеграции семьи, в частности взаимоотношения между ее членами, играют огромную роль в воспитательном процессе. Их нарушение влечет за собой значительные неблагоприятные последствия. Тот факт, что многие родители не знают эмоциональных потребностей своих детей и не обладают необходимыми н ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru