Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке .
Кроме того, члены заданного функционального ряда являются непрерывными функциями R.
Найдем производную общего члена заданного функционального ряда: . Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд и получим такой функциональный ряд:
.
Полученный ряд при представляет собой сумму убывающей геометрической прогрессии с
.
Тогда и
при
.
Итак, сумма ряда при
, т.е.
.
Функциональный ряд равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ: при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Инновационные процессы в России в конце 20 – начале
21 вв
Современные инновационные процессы в российском образовании обусловлены противоречиями, обострившимися на рубеже 70–80-х годов ХХ в., когда в отечественной школе с очевидностью стали проявляться признаки кризиса и застоя. Эти признаки обнаруживались в спаде интересов школьников к учебе, в упадке шк ...
Формирование устной речи у неслышащих детей
Как сказано выше слышащий ребенок, усваивая устную речь, располагает для этого определенной сенсорной базой (чувствительной основой), позволяющей ему воспринимать речь из вне и контролировать собственное произношение. При этом особо важная роль, как указывалось выше, принадлежит слуховому анализато ...
Принципы образования в области прав человека
Устойчивая (в долгосрочном плане), всеобъемлющая и эффективная национальная стратегия включения образования в области прав человека в образовательные системы может включать следующие мероприятия: – учет вопросов образования в области прав человека в национальном законодательстве, регулирующем школь ...