Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке
.
Кроме того, члены заданного функционального ряда являются непрерывными функциями
R.
Найдем производную общего члена заданного функционального ряда:
. Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд
сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд
и получим такой функциональный ряд:
.
Полученный ряд при
представляет собой сумму убывающей геометрической прогрессии с
.
Тогда
и
при
.
Итак, сумма ряда
при
, т.е.
.
Функциональный ряд
равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ:
при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Теоретические основы преподавания живописи пейзажа акварелью
Для преподавания живописи пейзажа акварелью на уроках изобразительного искусства необходимо для начала ознакомить учащихся с различными видами пейзажей, картинами художников и разными акварельными техниками. Необходимо начать с выполнения простых упражнений, небольших этюдов пейзажа, а также деталь ...
Антонимы в русском языке
Особое место в русском языке занимают антонимы - слова, противоположные по значению. Антонимия отражает существенную сторону системных связей в русской лексике. Современная наука о языке рассматривает синонимию и антонимию как крайние, предельные случаи взаимозаменяемости и противопоставленности сл ...
Средства повышения двигательной активности
умственно отсталых учащихся
Физическое воспитание, применительно к системе специальных коррекционных школ, мы понимаем как учебно-педагогический процесс, направленный на обучение двигательным действиям, на управление развитием физических качеств и на коррекцию двигательных нарушения, имеющихся у учащихся этих школ. В фундамен ...