Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке .
Кроме того, члены заданного функционального ряда являются непрерывными функциями R.
Найдем производную общего члена заданного функционального ряда: . Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд и получим такой функциональный ряд:
.
Полученный ряд при представляет собой сумму убывающей геометрической прогрессии с
.
Тогда и
при
.
Итак, сумма ряда при
, т.е.
.
Функциональный ряд равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ: при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Особенности формирования фонетико-фонематической стороны речи в онтогенезе
Понимание ребенком речи окружающих развивается по законам образования условных рефлексов. На исходе первого года в результате многократного одновременного слышанья ребенком определенного звукосочетания и зрительного восприятия определенного предмета между этими возбуждениями (слуховым и зрительным) ...
Общие вопросы методики руководства речевым развитием школьников на уроках
русского языка
Современный этап развития методики преподавания русского языка характеризуют новые подходы к определению целей обучения. Цели обучения, его содержание (знания, умения и навыки) определяются через понятия языковой, лингвистической и коммуникативной компетенций. Изучая язык как систему и овладевая ли ...
Использование подготовительных игр на
уроке иностранного языка в начальной школе
Подготовительные игры – это игры, направленные на формирование языковых навыков и умений. Они бывают грамматические, лексические, фонетические, орфографические. Рассмотрим каждую группу игр подробно. Грамматические игры Большую роль в обучении школьников играют грамматические игры, поскольку овладе ...