Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке
.
Кроме того, члены заданного функционального ряда являются непрерывными функциями
R.
Найдем производную общего члена заданного функционального ряда:
. Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд
сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд
и получим такой функциональный ряд:
.
Полученный ряд при
представляет собой сумму убывающей геометрической прогрессии с
.
Тогда
и
при
.
Итак, сумма ряда
при
, т.е.
.
Функциональный ряд
равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ:
при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Воздействие
подвижных игр с элементами спорта на развитие двигательных способностей детей
дошкольного возраста
Исследования сенсорных систем различной модальности: зрения, слуха, тактильности — показали, что представители игровых видов спорта занимают ведущие места по показателям, характеризующим улучшение функционального состояния сенсорных систем. Игры с элементами спорта отмечаются большим разнообразием ...
Психолого-педагогическая характеристика игр - драматизаций
Игры-драматизации - это особые игры, в которых ребенок разыгрывает знакомый сюжет, развивает его или придумывает новый. Важно, что в такой игре ребенок создает свой маленький мир и чувствует себя хозяином, творцом происходящих событий. Он управляет действиями персонажей и строит их отношения. Ребен ...
Проектная методика
Преподавание иностранных языков, являясь составной часть общей системы образования, подчиняется основным тенденциям развития этой системы. Наиболее очевидно это выражается в методах обучения. В последние два десятилетия в образовании формируется такая тенденция, как проективность. Это понятие было ...