Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 26

Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке .

Кроме того, члены заданного функционального ряда являются непрерывными функциями R.

Найдем производную общего члена заданного функционального ряда: . Исследуем функциональный ряд на абсолютную и равномерную сходимость. Для можно найти такое , что . По признаку Даламбера сходимости числовых рядов имеем: , так как , то числовой ряд сходится абсолютно.

Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд сходится равномерно и абсолютно при .

Следовательно, заданный функциональный ряд можно почленно продифференцировать.

Продифференцируем почленно заданный функциональный ряд и получим такой функциональный ряд:

.

Полученный ряд при представляет собой сумму убывающей геометрической прогрессии с .

Тогда и при .

Итак, сумма ряда при , т.е. .

Функциональный ряд равномерно и абсолютно сходится при , и функция непрерывна при . Значит, ряд можно почленно интегрировать. Проинтегрировав в пределах от до , находим

при .

Ответ: при .

В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.

Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.

Домашнее задание: Практическое занятие №14 из [9].

Ниже приведены решенные номера домашнего задания:

Пример №36 (№95 из [10]).

Можно ли к ряду

Страницы: 21 22 23 24 25 26 27 28 29 30 31

Образование, педагогика, воспитание:

Личностно-ориентированный урок: технология проведения
Урок – основной элемент образовательного процесса, но в системе личностно-ориентированного обучения меняется его функция, форма организации. Личностно ориентированный урок в отличие от традиционного в первую очередь изменяет тип взаимодействия «учитель-ученик». От командного стиля педагог переходит ...

Материалы и оборудование для работы акварелью
Акварель – прекрасный материал для работы на пленере. Она дает возможность быстро и точно передать состояние природы. Этюды акварелью пишутся в технике «а-ля прима» или «по-сырому». Основой для акварели является бумага, которую часто предварительно смачивают водой для достижения особой размытой фор ...

Подготовка к обучению грамоте
Известный советский психолог Л.С.Выгодский считал, что обучение должно идти впереди развития и вести его за собой, опираясь на «зону ближайшего развития». Это утверждения тесно связано с теоретическим понятием о том, что ребенок обладает особой чувствительностью к определенному роду внешним воздейс ...

Навигация по сайту

© 2024 Copyright www.ecsir.ru