Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке .
Кроме того, члены заданного функционального ряда являются непрерывными функциями R.
Найдем производную общего члена заданного функционального ряда: . Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд и получим такой функциональный ряд:
.
Полученный ряд при представляет собой сумму убывающей геометрической прогрессии с
.
Тогда и
при
.
Итак, сумма ряда при
, т.е.
.
Функциональный ряд равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ: при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Обоснование отбора материала для письменного инструктирования учащихся в
ходе одного из уроков
Прежде всего, нам нужно было выбрать тему урока производственного обучения и вид документации письменного инструктирования подходящий для изучения этой темы. Мы выбрали тему урока «Сплачивание и сращивание древесины на микрошип» которая является темой первого урока и вытекает из общей темы трех зан ...
Коррекционно-развивающее значение уроков ритмики в
школе для детей с нарушением интеллекта
Занятиям ритмикой в школе VIII вида уделяется большое внимание, особенно со школьниками начальных классов. Естественно, в разные годы по программе «Физическая культура» для учащихся вспомогательных школ включались те или иные аспекты занятий ритмикой, в основном, для школьников начальных классов. И ...
Характеристика типичных нарушений графомоторных навыков
у детей с нарушениями интеллекта и причин их возникновения
Низкая способность к анализу и синтезу визуально поступающей информации, сниженная дифференцированность зрительного восприятия и анализа, неумением подчинить восприятие поставленной задаче, низкий уровень осмысления наглядно и на слух воспринимаемого материала осложняют у младших школьников с наруш ...