Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 29

Исследуем ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

так как , то условие абсолютной сходимости ряда не выполняется при R. Следовательно, ряд расходится.

Значит, к заданному функциональному ряду нельзя применить теорему о почленном дифференцировании.

Ответ: Теорему о почленном дифференцировании к ряду применить нельзя.

Пример №39 (№115 из [10]).

Показать, что ряд допускает почленное интегрирование на отрезке , написать полученный при этом ряд.

Решение

Функциональный ряд можно интегрировать почленно на отрезке , если на этом отрезке его члены непрерывны, и ряд равномерно сходится.

Элементы функционального ряда являются непрерывными функциями для R, значит, и на отрезке .

Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке . Действительно, так как:

а) для R, N;

б) при R;

в) - числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии с ).

Значит, теорему о почленном интегрировании можно применить к функциональному ряду на отрезке .

Ряд полученный при почленном интегрировании заданного ряда, примет вид на отрезке .

Ответ: при .

Пример №40 (№119 из [10])

Определить область существования функции и исследовать ее на дифференцируемость во внутренних точках существования.

Решение

Определим область сходимости ряда . По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

если , т.е. , то заданный функциональный ряд сходится абсолютно.

При ряд примет вид . Полученный ряд сходится условно, так как удовлетворяет условиям признака Лейбница (признак сходимости числовых знакочередующихся рядов), т.е. и .

Страницы: 24 25 26 27 28 29 30 31 32

Образование, педагогика, воспитание:

Изображение предметов, животных, птиц
Упражнения состоят из серии последовательных движений и сопровождаются стихами, считалочками, ритм которых соответствует ритму выполняемого упражнения. При выполнении каждого упражнения нужно стараться вовлекать все пальчики, упражнения выполнять как правой, так и левой рукой. Нужно добиваться, что ...

Урочные формы внеклассной работы
Прогулки, экскурсии и походы имеют большое образовательное и воспитательное значение, поскольку дети знакомятся с природой, родным краем и его достопримечательностями. Эти мероприятия содействуют совершенствованию навыков в ходьбе, беге и играх, закаляют организм и укрепляют здоровье детей, способс ...

Проектирование и изготовление ветряка
Требования к ветряку. Ветродвигатель должен работать при слабом порыве ветра. Ветряк должен работать при постоянных переменах направления ветра. Лопасти ветродвигателя должны быть изготовлены из тонкого, легкого, упругого материала. Лопасти должны иметь дугообразную форму. Ветродвигатель должен быт ...

Навигация по сайту

© 2021 Copyright www.ecsir.ru