Исследуем ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:
,
так как , то условие абсолютной сходимости ряда не выполняется при
R. Следовательно, ряд
расходится.
Значит, к заданному функциональному ряду нельзя применить теорему о почленном дифференцировании.
Ответ: Теорему о почленном дифференцировании к ряду применить нельзя.
Пример №39 (№115 из [10]).
Показать, что ряд допускает почленное интегрирование на отрезке
, написать полученный при этом ряд.
Решение
Функциональный ряд можно интегрировать почленно на отрезке
, если на этом отрезке его члены непрерывны, и ряд равномерно сходится.
Элементы функционального ряда являются непрерывными функциями для
R, значит, и на отрезке
.
Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке . Действительно, так как:
а) для
R,
N;
б) при
R;
в) - числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии с
).
Значит, теорему о почленном интегрировании можно применить к функциональному ряду на отрезке
.
Ряд полученный при почленном интегрировании заданного ряда, примет вид на отрезке
.
Ответ: при
.
Пример №40 (№119 из [10])
Определить область существования функции и исследовать ее на дифференцируемость во внутренних точках существования.
Решение
Определим область сходимости ряда . По признаку Даламбера абсолютной сходимости функциональных рядов имеем:
,
если , т.е.
, то заданный функциональный ряд сходится абсолютно.
При ряд примет вид
. Полученный ряд сходится условно, так как удовлетворяет условиям признака Лейбница (признак сходимости числовых знакочередующихся рядов), т.е.
и
.
Образование, педагогика, воспитание:
Варианты решения и постановки проблемы
Существуют различные варианты постановки и решения проблемы. 1. Проблему решает педагог Педагог ставит проблему или проблемы, и сам их решает, излагая лекционный материал. При такой форме проведения занятия учащиеся внешне пассивны, но внутри каждого из них могут интенсивно протекать процессы поним ...
Методикаформирования представлений о домашних животных у детей раннего возрастасредствами дидактической игры
Провели диагностику предложенную Е.В. Гончаровой и Л.В. Моисеевой. В процессе индивидуальных бесед малышам демонстрировались дидактические картинки игрушки-модели. Анализируя уровень знаний детей о животных, обращали внимание на следующие критерии: 1. Узнавание и называние животного. 2. Знание особ ...
Технологии обучения истории
В методической литературе на сегодняшний день довольно мало информации о новейших технологиях преподавания Автор настоящей работы приводит наиболее доступные данные. Технология - это совокупность форм, методов, приемов и средств, применяемых в какой-либо деятельности. (См. А.В. Хуторской "Мето ...