Теорема 7. Пусть последовательность функций
, непрерывно дифференцируемых на
, и последовательность их производных
равномерно сходятся на
, тогда предел последовательности непрерывно дифференцируемых функций
, т.е.
, непрерывно дифференцируем на указанном отрезке и верно равенство:
или
.
Доказательство
Обозначим через
предельную функцию последовательностей функций
:
.
По условию теоремы
равномерно сходится к предельной функции на
.
На основании ранее доказанных теорем функция
непрерывна на
, следовательно, она будет интегрируема на
, т.е. существует
, он будет равен 
(на основании теоремы о почленном интегрировании функциональных последовательностей).
По свойству определенного интеграла:
, правую часть записанного выражения можно записать в виде следующего равенства: 
(на основании теоремы о предельной сумме сходящихся последовательностей) и видно, что функция
дифференцируема для
.
Известна теорема, что если функция дифференцируема в точке, то она непрерывна в этой точке. Значит, функция
непрерывна
.
В соответствии с теоремой, если функция непрерывна на
, то она на нем интегрируема, т.е. существует
. Следовательно, функция
непрерывна в каждой точке
.
Из пунктов 4),
5), и 6) следует, что функция
непрерывно дифференцируема на указанном отрезке.
Теорема доказана [14].
Следствие. Пусть функции
непрерывно дифференцируемы на
и функциональные ряды:
равномерно сходятся на
. Тогда сумма функционального ряда
непрерывно дифференцируема на указанном отрезке и верно равенство:
=
(т.е. допустимо почленное дифференцирование у такого функционального ряда).
Доказательство
Обозначим
предел частичных сумм
, т.е.
для функционального ряда
. По условию следствия должны равномерно сходиться последовательности функций
. На основании только что доказанной теоремы и функция
непрерывно дифференцируема, т.е.
. Последнее равенство можно переписать по-другому:
Образование, педагогика, воспитание:
Эффективные методы и приемы формирования коммуникативной полноценности речи
на материалах ИЗО
Как ребенку успешно развивать свою речь, речевое творчество? Как реализовать потенциал его речевых возможностей, побудить к созданию самых простых рассказов, сказок, стихов? Что посоветовать родителям, чтобы их дети и после школы сознательно стремились к творческому самовыражению в слове. Сплошные ...
Игры, формирующие правильное звукопроизношение
Общение ребенка со взрослыми и сверстниками наиболее успешно осуществляется тогда, когда говорящий внятно и чисто произносит слова. Нечеткое или неправильное произношение слов может быть причиной их непонимания. Неправильное произношение отдельных групп звуков в младшем дошкольном возрасте вполне з ...
Критерий Коши равномерной сходимости функциональной последовательности
Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для 0 , , N и выполнялось неравенство: . Доказательство необходимости Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область оп ...