Теорема 7. Пусть последовательность функций , непрерывно дифференцируемых на
, и последовательность их производных
равномерно сходятся на
, тогда предел последовательности непрерывно дифференцируемых функций
, т.е.
, непрерывно дифференцируем на указанном отрезке и верно равенство:
или
.
Доказательство
Обозначим через предельную функцию последовательностей функций
:
.
По условию теоремы равномерно сходится к предельной функции на
.
На основании ранее доказанных теорем функция непрерывна на
, следовательно, она будет интегрируема на
, т.е. существует
, он будет равен
(на основании теоремы о почленном интегрировании функциональных последовательностей).
По свойству определенного интеграла: , правую часть записанного выражения можно записать в виде следующего равенства:
(на основании теоремы о предельной сумме сходящихся последовательностей) и видно, что функция
дифференцируема для
.
Известна теорема, что если функция дифференцируема в точке, то она непрерывна в этой точке. Значит, функция непрерывна
.
В соответствии с теоремой, если функция непрерывна на , то она на нем интегрируема, т.е. существует
. Следовательно, функция
непрерывна в каждой точке
.
Из пунктов 4),
5), и 6) следует, что функция непрерывно дифференцируема на указанном отрезке.
Теорема доказана [14].
Следствие. Пусть функции непрерывно дифференцируемы на
и функциональные ряды:
равномерно сходятся на
. Тогда сумма функционального ряда
непрерывно дифференцируема на указанном отрезке и верно равенство:
=
(т.е. допустимо почленное дифференцирование у такого функционального ряда).
Доказательство
Обозначим предел частичных сумм
, т.е.
для функционального ряда
. По условию следствия должны равномерно сходиться последовательности функций
. На основании только что доказанной теоремы и функция
непрерывно дифференцируема, т.е.
. Последнее равенство можно переписать по-другому:
Образование, педагогика, воспитание:
Методика формирования синтаксического строя речи
В рамках констатирующего эксперимента выявляется уровень синтаксического строя речи учащихся, анализируются грамматические и речевые ошибки, определяется значение синтаксических конструкций различных функционально-стилистических рядов в читательской деятельности. Анализ письменной речи учащихся опи ...
Использование метода проектов при обучении информатике в начальной школе
Таким образом, раскрыв содержание понятий: «метод», «метод проектов», « проект», «учебная тема», «мышление», «младший школьный возраст» и выявив особенности метода проектов, мы пришли к выводу о том, что использование данного метода на уроках информатики способствует более эффективному усвоению уча ...
Анализ
результатов коррекции нарушений графомоторных навыков у детей младшего школьного
возраста с нарушением интеллекта
После проведения коррекционной работы по устранению нарушений графомоторных навыков, нами была проведена повторная диагностика уровня сформированности графомоторных навыков у детей младшего школьного возраста с нарушением интеллекта. В исследовании принимали участие те же ученики второго класса с и ...