Золотая педагогика

Определения равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Определения равномерно сходящихся функциональных последовательностей и рядов

Страница 1

Опр.5. Последовательность функций равномерно сходится на множестве Х к предельной функции , если

.

Опр.6. Функциональная последовательность называется равномерно сходящейся на множестве X, если существует функция , в которой она равномерно сходится на множестве X. Обозначение:

.

Геометрический смысл равномерной сходимости функциональной последовательности

Перепишем неравенство опр.5 в виде двойного неравенства:

.

Это означает, что график функций целиком располагается в полосе шириной , и функции и получены смещением функции вверх и вниз на величину .

Рис.1.

Понятие равномерной сходимости естественным образом переносится и на функциональные ряды.

§4. Определения равномерной сходимости функциональных рядов

Опр.7. Если последовательность частичных сумм функционального ряда равномерно сходится к функции на множестве X, то ряд равномерно сходится на множестве X [14].

Рассмотрим определение равномерной сходимости функционального

ряда на некотором отрезке .

Пусть функциональный ряд сходится на отрезке к функции и - какое-нибудь значение из области сходимости, причем .

Тогда числовой ряд

сходится и его сумма равна , т.е.

=

Представим это равенство в виде

=,

где - n-я частичная сумма; - остаток ряда.

Тогда,

,

.

Как и в случае функциональной последовательности, для функционального ряда номер также зависит как от , так и от значения из области сходимости: . Однако, для функционального ряда число может и не зависеть от , т.е. это число будет одно и тоже для каждого значения , принадлежащего области сходимости.

Опр.8. Функциональный ряд , сходящийся на отрезке , называется равномерно сходящимся, если для любого существует такой номер , не зависящий от , что при , каково бы ни было .

Страницы: 1 2

Образование, педагогика, воспитание:

Графика. Стили и материалы. Особенности выполнения графических работ
Во-первых, графика это искусство, основой которого является рисунок. Линия, пятно и светотень являются основными изобразительными средствами графики. График, используя контрасты только черного и белого в рисунке или гравюре, убедительно передает широкий слепящий поток открытого прямого света. Цвет ...

Метод проектов и его характеристика
В процессе «обучения – учения» происходит постоянное взаимодействие учителя и ученика. Учение, имеющее ярко выраженную личностную окраску, каждым из учащихся осуществляется по-разному: один не может продемонстрировать усвоение знаний, другой на основе ранее полученного опыта, наоборот, показывает ф ...

Интенсивная методика
В современных условиях быстрого развития науки и техники проблема перехода на интенсивный путь развития стоит и решается во всех сферах общества и на всех этапах формирования личности и специалистов. Также актуальна она и для обучения иностранным языкам. Поиски оптимальных путей решения этого вопро ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru