Пример №2. Исследовать на сходимость функциональный ряд
.
Решение
При сумма ряда равна нулю; при
ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму
. При
сумма ряда равна единице. При
и
ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.
Таким образом, данный ряд сходится на отрезке и имеет сумму
Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке .
Остаток ряда имеет вид
Очевидно, что . Ряд в правой части равенства
представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому
.
Для того чтобы выполнялось неравенство , нужно положить
, откуда
или
.
Пусть - ближайшее из натуральных чисел, следующих за числом
. Тогда для любого положительного числа
существует такое натуральное число
, зависящее от
, что
при
. Для каждого заданного
можно найти соответствующее
, определяемое отношением
. Однако если
, меняясь, приближается к нулю, то
также будет приближаться к нулю, а число
- неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа
нельзя найти такой не зависящий от значения
номер
, что
при
. Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на
, где
- положительное постоянное число, меньшее 1. В качестве номера
(не зависящего от
) можно взять ближайшее из натуральных чисел, следующих за числом
[2].
Образование, педагогика, воспитание:
Экспериментальное исследование эффективности применения дидактических игр в
процессе обучения информатике
Планирование экспериментальной части данного исследования осуществлялось с учётом основных требований к логике и организации педагогического эксперимента: определили цель, гипотезу, задачи, методы эксперимента и т.д. Перейдём к их конкретному описанию. Целью экспериментальной части исследования яви ...
Внедрение системы работы по обучению игре в хоккей детей подготовительной группы
Цель: формирование у детей подготовительной группы навыков игры в хоккей, предусмотренных примерной основной общеобразовательной программе дошкольного образования "Детство", развитие быстроты, формирование интереса к играм и упражнениям к элементам хоккея. Согласно примерной основной обще ...
Характеристика быстроты как двигательного качества
Хоккей является средством развития быстроты. Быстрота — способность человека совершать те или иные действия, физические упражнения в минимальный для данных условий отрезок времени. Быстрота — способность человека выполнять движения в наикратчайшее время. Высокая пластичность и большая подвижность н ...