Золотая педагогика

Определения равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Определения равномерно сходящихся функциональных последовательностей и рядов

Страница 2

Пример №2. Исследовать на сходимость функциональный ряд

.

Решение

При сумма ряда равна нулю; при ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму . При сумма ряда равна единице. При и ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.

Таким образом, данный ряд сходится на отрезке и имеет сумму

Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке .

Остаток ряда имеет вид

Очевидно, что . Ряд в правой части равенства представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому .

Для того чтобы выполнялось неравенство , нужно положить , откуда или .

Пусть - ближайшее из натуральных чисел, следующих за числом . Тогда для любого положительного числа существует такое натуральное число , зависящее от , что при . Для каждого заданного можно найти соответствующее , определяемое отношением . Однако если , меняясь, приближается к нулю, то также будет приближаться к нулю, а число - неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа нельзя найти такой не зависящий от значения номер , что при . Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на , где - положительное постоянное число, меньшее 1. В качестве номера (не зависящего от ) можно взять ближайшее из натуральных чисел, следующих за числом [2].

Страницы: 1 2 

Образование, педагогика, воспитание:

Структура проблемного урока
Проблемным называется урок, на котором преподаватель целенаправленно создаёт ситуации для поисковой деятельности студентов при приобретении и закреплении новых знаний и способов действий. Особенностью проблемного урока является то, что повторение пройденного материала в большинстве случаев сливаетс ...

Понятие личностно-ориентированного обучения
Личностно-ориентированное обучение (ЛОО) – это такое обучение, которое во главу угла ставит самобытность ребенка, его самоценность, субъективность процесса учения. В педагогических работах, посвящённых вопросам такого рода обучения, оно обычно противопоставляется традиционному, ориентированному на ...

Параметры, позволяющие диагностировать развитие креативности в процессе музыкального школьного образования
Креативность является научно установившейся категорией в психологической науке. Основная задача психологии творчества состоит в раскрытии психических закономерностей и механизмов творческого процесса и креативности (творческости). Творчество рассматривается как основа и механизм развития психики. ( ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru