Золотая педагогика

Определения равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Определения равномерно сходящихся функциональных последовательностей и рядов

Страница 2

Пример №2. Исследовать на сходимость функциональный ряд

.

Решение

При сумма ряда равна нулю; при ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму . При сумма ряда равна единице. При и ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.

Таким образом, данный ряд сходится на отрезке и имеет сумму

Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке .

Остаток ряда имеет вид

Очевидно, что . Ряд в правой части равенства представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому .

Для того чтобы выполнялось неравенство , нужно положить , откуда или .

Пусть - ближайшее из натуральных чисел, следующих за числом . Тогда для любого положительного числа существует такое натуральное число , зависящее от , что при . Для каждого заданного можно найти соответствующее , определяемое отношением . Однако если , меняясь, приближается к нулю, то также будет приближаться к нулю, а число - неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа нельзя найти такой не зависящий от значения номер , что при . Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на , где - положительное постоянное число, меньшее 1. В качестве номера (не зависящего от ) можно взять ближайшее из натуральных чисел, следующих за числом [2].

Страницы: 1 2 

Образование, педагогика, воспитание:

Основные периоды психического развития ребенка
В истории детской психологии можно отметить немало попыток создать возрастную периодизацию психического развития ребенка. Оригинальное понимание этой проблемы было разработано в свое время Л.С. Выготским. Во-первых, он справедливо полагал, что периодизацию психического развития необходимо проводить ...

История становления и развития музыки православной церкви на Украине и в России
Вопросам истории церковного пения в России и на Украине посвящён ряд работ, созданных в большинстве своём в XIX , начале ХХ веков. Это исследования Д. Аллеманова, В. Металлова, А. Преображенского, Д. Разумовского, Н. Финдейзена. Во второй половине ХХ века эта сфера музыкальной культуры рассматривал ...

Применение дидактических игр на уроках математики во 2 классе
Учащихся вторых классов больше всего увлекает в игре её результат. У них проявляется тяга к играм на соревнование. В начале их увлекает желание одержать личную победу, стать победителем в соревновании между учениками в классе. Постепенно интересы ученика расширяются, он переживает не только свой ли ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru