Пример №2. Исследовать на сходимость функциональный ряд
.
Решение
При
сумма ряда равна нулю; при
ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму
. При
сумма ряда равна единице. При
и
ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.
Таким образом, данный ряд сходится на отрезке
и имеет сумму
Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке
.
Остаток ряда имеет вид
Очевидно, что
. Ряд в правой части равенства
представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому
.
Для того чтобы выполнялось неравенство
, нужно положить
, откуда
или
.
Пусть
- ближайшее из натуральных чисел, следующих за числом
. Тогда для любого положительного числа
существует такое натуральное число
, зависящее от
, что
при
. Для каждого заданного
можно найти соответствующее
, определяемое отношением
. Однако если
, меняясь, приближается к нулю, то
также будет приближаться к нулю, а число
- неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа
нельзя найти такой не зависящий от значения
номер
, что
при
. Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на
, где
- положительное постоянное число, меньшее 1. В качестве номера
(не зависящего от
) можно взять ближайшее из натуральных чисел, следующих за числом
[2].
Образование, педагогика, воспитание:
Учебные тренинговые игры на уроках истории России и исторического краеведения
Сегодня практически любой учитель истории применяет в своей деятельности нетрадиционные формы построения уроков. Это связано со становлением нового стиля педагогического мышления учителя, ориентирующегося на эффективное решение образовательно-воспитательных задач в условиях скромного количества пре ...
Подготовка и проведение учебно-воспитательного занятия с
применением видеометода
При подготовке к уроку или внеклассному мероприятию, на котором будут применяться технические средства обучения необходимо, прежде всего, ознакомиться с 1) санитарно-гигиеническими требованиями к организации учебно-воспитательного процесса с использованием в нём электронной техники, и 2) действующе ...
Игровые технологии преподавания происхождения сущности государства и права
в современной школе
Игра – это определенная целостная реальность, обязательно как-то соотносящаяся с существующим миром («кусок» жизни). В этой реальности действуют и общаются люди. Соответственно, в процессе игры играющие получают опыт. Составляющими опыта могут быть и знания, и эмоциональные впечатления, и навыки, и ...