Золотая педагогика

Критерий Коши равномерной сходимости функциональной последовательности

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функциональной последовательности

Страница 1

Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для

0 , , N и выполнялось неравенство:

.

Доказательство необходимости

Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для 0 N, , ,N и :

.

Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е. 0 (), N, , : .

При тех же условиях существует такой номер, что при будет выполняться неравенство: .

Сложим два неравенства одинакового смысла:

+

В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:

+

Следовательно, 0, , ,N.

Доказательство достаточности:

Пусть 0 N, , N: . Требуется доказать, что равномерно сходится к предельной функции S (x) на X.

Страницы: 1 2

Образование, педагогика, воспитание:

Сущность и специфика педагогической задачи
С незапамятных времен понятие "задача" используется и в теории, и в практике педагогики. Оно употребляется обычно для описания форм предъявления учебного материала и специальных учебных заданий. Педагогическую задачу надо понимать как систему особого рода, представляющую собой основную ед ...

Формы занятий и контроль знаний на элективных курсах по математике
Введение профильного обучения, а особенно элективных курсов, в программу старшей школы, несомненно, потребует разнообразия форм и методов обучения, так как профильное обучение – это не только дифференцирование содержания образования, но, как правило, и по-другому построенный учебный процесс. При вы ...

Учебно-методический комплекс по русскому языку авторов Л.М. Зелениной и Т.Е. Хохловой
Нами был проанализирован еще один учебно-методический комплекс по русскому языку авторов Л.М. Зелениной и Т.Е. Хохловой. Этот курс построен на познавательной активности и самостоятельности учащихся. Младшие школьники в ходе обучения открывают для себя родной язык как предмет изучения, предмет анали ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru