Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для
0
,
,
N и
выполнялось неравенство:
.
Доказательство необходимости
Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для
0
N,
,
,
N и
:
.
Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е.
0 (
),
N,
,
:
.
При тех же условиях существует такой номер
, что при ![]()
будет выполняться неравенство:
.
Сложим два неравенства одинакового смысла:
+
В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:
![]()
+![]()
Следовательно,
0,
,
,
N.
Доказательство достаточности:
Пусть
0
N, ![]()
,
N:
. Требуется доказать, что
равномерно сходится к предельной функции S (x) на X.
Образование, педагогика, воспитание:
Экспериментальное определение уровня физического
развития и особенностей двигательного анализатора учащихся с нарушением
интеллекта
Анализ теоретических источников по изучаемой нами проблеме навел нас на мысль о том, что процесс физической подготовки умственно отсталых детей следует начинать с обследования здоровья, физического развития и двигательной сферы. Учащиеся школы VIII вида, как правило, отстают от нормальных школьнико ...
Учебные тренинговые игры на уроках истории России и исторического краеведения
Сегодня практически любой учитель истории применяет в своей деятельности нетрадиционные формы построения уроков. Это связано со становлением нового стиля педагогического мышления учителя, ориентирующегося на эффективное решение образовательно-воспитательных задач в условиях скромного количества пре ...
Реализация технологии физического воспитания в работе с детьми 5–6 лет с
задержкой психического развития
В РФ действуют специальные образовательные учреждения I-VШ видов. Для обучения и воспитания детей с ЗПР организуются учреждения VII вида: детский сад компенсирующего вида с приоритетным осуществлением квалифицированной коррекции в физическом и психическом развитии воспитанников; детский сад комбини ...