Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для
0
,
,
N и
выполнялось неравенство:
.
Доказательство необходимости
Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для
0
N,
,
,
N и
:
.
Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е.
0 (
),
N,
,
:
.
При тех же условиях существует такой номер
, что при ![]()
будет выполняться неравенство:
.
Сложим два неравенства одинакового смысла:
+
В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:
![]()
+![]()
Следовательно,
0,
,
,
N.
Доказательство достаточности:
Пусть
0
N, ![]()
,
N:
. Требуется доказать, что
равномерно сходится к предельной функции S (x) на X.
Образование, педагогика, воспитание:
Знакомство с деятельностью учителя-предметника
Особенности программы, по которой работает учитель – Бедаш Наталья Николаевна в своей работе использует программу Владимира Васильевича Пасечника, корректируя ее в зависимости от учебных возможностей учащихся. Перечень учебно-методических пособий, дидактических материалов, которыми пользуется учите ...
Структура профильной школы
Важнейшим вопросом профильного обучения является определение модели организации профильного обучения. При этом следует учитывать, с одной стороны, стремление наиболее полно учесть индивидуальные интересы, способности, склонности всех старшеклассников, с другой стороны – ряд факторов, сдерживающих п ...
Социально-педагогическая программа коррекции детско-родительских отношений
Механизмы интеграции семьи, в частности взаимоотношения между ее членами, играют огромную роль в воспитательном процессе. Их нарушение влечет за собой значительные неблагоприятные последствия. Тот факт, что многие родители не знают эмоциональных потребностей своих детей и не обладают необходимыми н ...