Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для
0
,
,
N и
выполнялось неравенство:
.
Доказательство необходимости
Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для
0
N,
,
,
N и
:
.
Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е.
0 (
),
N,
,
:
.
При тех же условиях существует такой номер
, что при ![]()
будет выполняться неравенство:
.
Сложим два неравенства одинакового смысла:
+
В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:
![]()
+![]()
Следовательно,
0,
,
,
N.
Доказательство достаточности:
Пусть
0
N, ![]()
,
N:
. Требуется доказать, что
равномерно сходится к предельной функции S (x) на X.
Образование, педагогика, воспитание:
Применение дидактических игр на уроках математики во 2 классе
Учащихся вторых классов больше всего увлекает в игре её результат. У них проявляется тяга к играм на соревнование. В начале их увлекает желание одержать личную победу, стать победителем в соревновании между учениками в классе. Постепенно интересы ученика расширяются, он переживает не только свой ли ...
История развития и становления
Идея проблемного обучения не нова. Величайшие педагоги прошлого всегда искали пути преобразования процесса учения в радостный процесс познания, развития умственных сил и способностей учащихся (Я. А. Коменский, Ж. Ж. Руссо, И. Г. Песталоцци, Ф. А. Дистервег, К. Д. Ушинский и др.). В XX столетии идеи ...
Почленное
дифференцирование функциональных рядов
Теорема 7. Пусть последовательность функций , непрерывно дифференцируемых на , и последовательность их производных равномерно сходятся на , тогда предел последовательности непрерывно дифференцируемых функций , т.е. , непрерывно дифференцируем на указанном отрезке и верно равенство: или . Доказатель ...