Золотая педагогика

Критерий Коши равномерной сходимости функциональной последовательности

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функциональной последовательности

Страница 1

Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для

0 , , N и выполнялось неравенство:

.

Доказательство необходимости

Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для 0 N, , ,N и :

.

Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е. 0 (), N, , : .

При тех же условиях существует такой номер, что при будет выполняться неравенство: .

Сложим два неравенства одинакового смысла:

+

В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:

+

Следовательно, 0, , ,N.

Доказательство достаточности:

Пусть 0 N, , N: . Требуется доказать, что равномерно сходится к предельной функции S (x) на X.

Страницы: 1 2

Образование, педагогика, воспитание:

Учебные тренинговые игры на уроках истории России и исторического краеведения
Сегодня практически любой учитель истории применяет в своей деятельности нетрадиционные формы построения уроков. Это связано со становлением нового стиля педагогического мышления учителя, ориентирующегося на эффективное решение образовательно-воспитательных задач в условиях скромного количества пре ...

Определения равномерно сходящихся функциональных последовательностей и рядов
Опр.5. Последовательность функций равномерно сходится на множестве Х к предельной функции , если . Опр.6. Функциональная последовательность называется равномерно сходящейся на множестве X, если существует функция , в которой она равномерно сходится на множестве X. Обозначение: . Геометрический смыс ...

Значение и особенности применения дидактических игр на уроках информатики
Современный период развития цивилизационного общества по праву называется этапом информатизации. Характерной чертой этого периода является тот факт, что доминирующим видом деятельности в сфере общественногo производства, повышающим его эффективность и наукоемкость становится сбор, продуцирование, о ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru