Золотая педагогика

Критерий Коши равномерной сходимости функциональной последовательности

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функциональной последовательности

Страница 1

Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для

0 , , N и выполнялось неравенство:

.

Доказательство необходимости

Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для 0 N, , ,N и :

.

Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е. 0 (), N, , : .

При тех же условиях существует такой номер, что при будет выполняться неравенство: .

Сложим два неравенства одинакового смысла:

+

В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:

+

Следовательно, 0, , ,N.

Доказательство достаточности:

Пусть 0 N, , N: . Требуется доказать, что равномерно сходится к предельной функции S (x) на X.

Страницы: 1 2

Образование, педагогика, воспитание:

Механизм речи в концепции Н.И. Жинкина
Н.И. Жинкиным выявлено, что порождение и восприятие речи являются процессами поэтапной реализации внутренней программы, которая управляется речевым механизмом. Вне зависимости от трактовки речи как говорения или как процесса общения посредством говорения и слушания, закономерности функционирования ...

Специфика обучения и воспитания детей с нарушениями слуха
Глухой и слабослышащий ребенок, как и слышащий, при рождении — существо, открытое миру, которому необходимо воспитание как помощь в жизни. В соответствии со своей биологической сущностью он способен к обучению и может в процессе социализации получить воспитание и образование, которые станут предпос ...

Учебные кинофильмы на уроках
Учебное кино – самое популярное из всех технических средств обучения, применяемое в рамках видеометода. Учебное кино можно с успехом включать в урок в тех случаях, когда необходимо: показать (или смоделировать) явления и процессы (реже предметы), увидеть которые невозможно вообще или без особой тех ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru