Золотая педагогика

Критерий Коши равномерной сходимости функциональной последовательности

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функциональной последовательности

Страница 1

Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для

0 , , N и выполнялось неравенство:

.

Доказательство необходимости

Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для 0 N, , ,N и :

.

Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е. 0 (), N, , : .

При тех же условиях существует такой номер, что при будет выполняться неравенство: .

Сложим два неравенства одинакового смысла:

+

В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:

+

Следовательно, 0, , ,N.

Доказательство достаточности:

Пусть 0 N, , N: . Требуется доказать, что равномерно сходится к предельной функции S (x) на X.

Страницы: 1 2

Образование, педагогика, воспитание:

Экспериментальное определение уровня физического развития и особенностей двигательного анализатора учащихся с нарушением интеллекта
Анализ теоретических источников по изучаемой нами проблеме навел нас на мысль о том, что процесс физической подготовки умственно отсталых детей следует начинать с обследования здоровья, физического развития и двигательной сферы. Учащиеся школы VIII вида, как правило, отстают от нормальных школьнико ...

Содержание обучения английскому языку как второму иностранному
Проблема родного языка неизменно возникает всякий раз при разработке методов обучения иностранному языку. Сложность этой проблемы нашла свое отражение в таких методических принципах обучения, как опора на родной язык, его учет или исключение из учебного процесса. Все речевые механизмы учащихся сфор ...

Экологическая составляющая химического образования
Современная экология – обширный междисциплинарный научный комплекс. Наряду с общей экологией, исследующей отношения организмов и условий среды на уровне особей, популяций, биоценозов и экосистем, этот комплекс включает прикладную экологию и социальную экологию. Столь широкий круг проблем экологии п ...

Навигация по сайту

© 2020 Copyright www.ecsir.ru