Так как по условию достаточности выполняется неравенство , то какое бы х из Х не было взято, функциональная последовательность
будет числовой последовательностью, а для числовой последовательности выполняется критерий Коши сходимости числовой последовательности
, который утверждает, что эта последовательность
сходится.
3) Значит, у функциональной последовательности
существует конечный предел, а это доказывает существование предельной функции для функциональной последовательности:
. Кроме того,
.
А это означает, что функциональная последовательность будет сходиться на множестве Х, так как будет выполняться неравенство: , перейдем к пределу при
, а n-const, получим:
- условие равномерной сходимости функциональной последовательности по определению.
Теорема доказана .
Образование, педагогика, воспитание:
Инновационный процесс и его особенности
Инновационный процесс в сфере образования - это обновление и изменение концепций образования, содержания учебных программ, методов и методик, способов обучения и воспитания. Цель инновационного процесса в образовании - кардинальные изменения сложившихся традиционных элементов образовательной систем ...
Закономерности, критерии и степени исправления
осужденных
Понятия «исправление» и «перевоспитание» употребляются в трех аспектах: 1). для обозначения цели деятельности органов, исполняющих наказание, как юридическое воплощение психологического принципа исправимости личности; 2). для характеристики процесса изменения и перестройки личности осужденного; 3). ...
Понятие "эвристическая
технология" в психолого-педагогической литературе
Термин "эвристика" происходит от греческого heuresko - отыскиваю, открываю. В настоящее время используется несколько значений этого термина. Эвристика может пониматься как: 1) научно-прикладная дисциплина, изучающая творческую деятельность (в то же время следует признать, что основателей ...