Так как по условию достаточности выполняется неравенство , то какое бы х из Х не было взято, функциональная последовательность
будет числовой последовательностью, а для числовой последовательности выполняется критерий Коши сходимости числовой последовательности
, который утверждает, что эта последовательность
сходится.
3) Значит, у функциональной последовательности
существует конечный предел, а это доказывает существование предельной функции для функциональной последовательности:
. Кроме того,
.
А это означает, что функциональная последовательность будет сходиться на множестве Х, так как будет выполняться неравенство: , перейдем к пределу при
, а n-const, получим:
- условие равномерной сходимости функциональной последовательности по определению.
Теорема доказана .
Образование, педагогика, воспитание:
Анализ методов, подходов, приемов, средства для развития изобретательских
способностей
Развитие изобретательских способностей студентов – деятельность, основанная на использовании комплекса способов и средств, обеспечивающих выявление и развитие творческих способностей студентов инженерных специальностей. Эти способы и средства следует рассматривать как дополнение к существующей сист ...
Кабинеты гуманитарных дисциплин
В кабинетах гуманитарных дисциплин в современной школе необходим хотя бы один мультимедийный компьютер, а также проектор, экран, оверхед-проектор, слайд-проектор, видеоплеер, телевизор и музыкальный центр. А также комплекты видеофильмов, аудиокассет и программного обеспечения, портреты великих писа ...
Роль фонематического восприятия в развитии речи
Поступление ребёнка в школу – важный этап в жизни, который меняет социальную ситуацию его развития. К обучению в 1-ом классе ребёнка необходимо готовить. Важно, чтобы дети 7-летнего возраста владели, прежде всего, грамотной фразой, развёрнутой речью, объёмом знаний, умений, навыков, определённых пр ...