Золотая педагогика

Критерий Коши равномерной сходимости функциональной последовательности

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функциональной последовательности

Страница 2

Так как по условию достаточности выполняется неравенство , то какое бы х из Х не было взято, функциональная последовательность будет числовой последовательностью, а для числовой последовательности выполняется критерий Коши сходимости числовой последовательности , который утверждает, что эта последовательность сходится.

3) Значит, у функциональной последовательности существует конечный предел, а это доказывает существование предельной функции для функциональной последовательности: . Кроме того, .

А это означает, что функциональная последовательность будет сходиться на множестве Х, так как будет выполняться неравенство: , перейдем к пределу при , а n-const, получим: - условие равномерной сходимости функциональной последовательности по определению.

Теорема доказана .

Страницы: 1 2 

Образование, педагогика, воспитание:

Инновационный процесс и его особенности
Инновационный процесс в сфере образования - это обновление и изменение концепций образования, содержания учебных программ, методов и методик, способов обучения и воспитания. Цель инновационного процесса в образовании - кардинальные изменения сложившихся традиционных элементов образовательной систем ...

Закономерности, критерии и степени исправления осужденных
Понятия «исправление» и «перевоспитание» употребляются в трех аспектах: 1). для обозначения цели деятельности органов, исполняющих наказание, как юридическое воплощение психологического принципа исправимости личности; 2). для характеристики процесса изменения и перестройки личности осужденного; 3). ...

Понятие "эвристическая технология" в психолого-педагогической литературе
Термин "эвристика" происходит от греческого heuresko - отыскиваю, открываю. В настоящее время используется несколько значений этого термина. Эвристика может пониматься как: 1) научно-прикладная дисциплина, изучающая творческую деятельность (в то же время следует признать, что основателей ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru