Так как по условию достаточности выполняется неравенство , то какое бы х из Х не было взято, функциональная последовательность
будет числовой последовательностью, а для числовой последовательности выполняется критерий Коши сходимости числовой последовательности
, который утверждает, что эта последовательность
сходится.
3) Значит, у функциональной последовательности
существует конечный предел, а это доказывает существование предельной функции для функциональной последовательности:
. Кроме того,
.
А это означает, что функциональная последовательность будет сходиться на множестве Х, так как будет выполняться неравенство: , перейдем к пределу при
, а n-const, получим:
- условие равномерной сходимости функциональной последовательности по определению.
Теорема доказана .
Образование, педагогика, воспитание:
Понятие мышления
В процессе ощущения и восприятия человек познает окружающий мир в результате непосредственного, чувственного его отражения. Однако внутренние закономерности, сущность вещей не могут отразиться в нашем сознании непосредственно. Ни одна закономерность не может быть воспринята непосредственно органами ...
Психолого-педагогическая характеристика игр - драматизаций
Игры-драматизации - это особые игры, в которых ребенок разыгрывает знакомый сюжет, развивает его или придумывает новый. Важно, что в такой игре ребенок создает свой маленький мир и чувствует себя хозяином, творцом происходящих событий. Он управляет действиями персонажей и строит их отношения. Ребен ...
Глобализация высшего образования в Европе: предболонский период
Первый период – 1957 – 1982 годы. Конференция министров образования в 1971 году обозначила пять основных моментов общеевропейского измерения в образовательных системах: взаимное признание дипломов; обоснование идеи формирования европейского университета; кооперация вторичного и высшего образования; ...