Золотая педагогика

Определения функциональной последовательности и функционального ряда

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Определения функциональной последовательности и функционального ряда

Опр.1. Пусть дана последовательность функций: , причем функции являются функциями одной переменной и определены в некоторой области . Такая последовательность называется функциональной и обозначается: .

Пусть для каждого эта последовательность имеет конечный предел. Величина этого предела зависит от значения . Поэтому функциональная последовательность своим пределом будет также иметь функцию, зависящую от , т.е. .

Опр.2. Функция называется предельной функцией последовательности .

Теперь нас будут интересовать не только существование предела при каждом отдельном значении , но и функциональные свойства предельной функции .

Опр.3. Рассмотрим ряд, элементами которого являются функции одной и той же переменной , заданной в области :

.

Такой ряд называется функциональным рядом.

Сходимость этого ряда определяется следующим образом: при каждом фиксированном значении функция принимает числовое значение. Поэтому при каждом из X функциональный ряд превращается в числовой ряд.

Пусть дан функциональный ряд и он сходится при каждом фиксированном из, тогда сумма такого ряда представляет собой некоторую функцию от переменной x: . Сумма для функционального ряда определяется также как и для числового: . Здесь - частичная сумма функционального ряда n-го порядка

.

Опр.4. Множество всех значений x, при которых заданный функциональный ряд сходится, называется областью сходимости функционального ряда.

Пример №1. Найти область сходимости ряда

.

Решение. Применим признак Д`Аламбера абсолютной сходимости функционального ряда. Имеем:

Следовательно, при данный ряд сходится абсолютно, а при расходится.

Рассмотрим теперь поведение исследуемого функционального ряда при и .

При этих значениях получаются соответствующие числовые ряды:

которые, сходятся по интегральному признаку сходимости числового положительного ряда и признаку сходимости знакочередующегося ряда соответственно.

Окончательно получаем, что на отрезке [-1,1] заданный функциональный ряд абсолютно сходится.

Образование, педагогика, воспитание:

Разработка письменного инструктирования
Письменное инструктирование является одним из методических приемов проведения основной части урока производственного обучения в мастерской. Этот прием позволяет наладить самостоятельную работу учащихся по выполнению учебного задания. Нам известно четыре основных вида документации письменного инстру ...

Понятие и сущность полоролевой социализации детей среднего дошкольного возраста
Воспитание как процесс приобщения человека к историческому опыту в содержательной и целеполагающей основе всегда определяется ведущими потребностями общества. Изменение базовых социальных ориентиров неизбежно приводит к пересмотру и переоценке задач, направлений, форм организации воспитательной раб ...

Разработка элективного курса «Элементы комбинаторики и теории вероятностей»
В соответствии с письмом Министерства образования Российской Федерации от 23.09.2003 г. №03–93 ин/13–03 «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования школы» рекомендуется во всех образовательных учреждениях начать с 2003/2004 учебного ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru