Опр.1. Пусть дана последовательность функций: , причем функции являются функциями одной переменной
и определены в некоторой области
. Такая последовательность называется функциональной и обозначается:
.
Пусть для каждого эта последовательность имеет конечный предел. Величина этого предела зависит от значения
. Поэтому функциональная последовательность своим пределом будет также иметь функцию, зависящую от
, т.е.
.
Опр.2. Функция называется предельной функцией последовательности
.
Теперь нас будут интересовать не только существование предела при каждом отдельном значении , но и функциональные свойства предельной функции
.
Опр.3. Рассмотрим ряд, элементами которого являются функции одной и той же переменной , заданной в области
:
.
Такой ряд называется функциональным рядом.
Сходимость этого ряда определяется следующим образом: при каждом фиксированном значении функция
принимает числовое значение. Поэтому при каждом
из X функциональный ряд
превращается в числовой ряд.
Пусть дан функциональный ряд и он сходится при каждом фиксированном
из
, тогда сумма такого ряда представляет собой некоторую функцию от переменной x:
. Сумма для функционального ряда определяется также как и для числового:
. Здесь
- частичная сумма функционального ряда n-го порядка
.
Опр.4. Множество всех значений x, при которых заданный функциональный ряд сходится, называется областью сходимости функционального ряда.
Пример №1. Найти область сходимости ряда
.
Решение. Применим признак Д`Аламбера абсолютной сходимости функционального ряда. Имеем:
Следовательно, при данный ряд сходится абсолютно, а при
расходится.
Рассмотрим теперь поведение исследуемого функционального ряда при и
.
При этих значениях получаются соответствующие числовые ряды:
которые, сходятся по интегральному признаку сходимости числового положительного ряда и признаку сходимости знакочередующегося ряда соответственно.
Окончательно получаем, что на отрезке [-1,1] заданный функциональный ряд абсолютно сходится.
Образование, педагогика, воспитание:
Организм ребенка как саморазвивающаяся и
саморегулирующаяся система
Организм ребенка - это живая саморазвивающаяся и саморегулирующаяся система, живой аппарат, обеспечивающий удовлетворение всех родовых и прижизненно возникающих потребностей и психическую деятельность человека. Организм состоит из огромного числа клеток различного строения, в зависимости от того, к ...
Методика формирования морфологического строя речи
Ученые-методисты рекомендуют учителям проводить работу над закреплением грамматических моделей систематически, на каждом уроке и обязательно включать в домашние задания во всех классах. Изучение грамматических форм чаще всего выделяется, как самостоятельная часть урока, но в некоторых случаях может ...
Дидактические игры
Особый вариант педагогического общения представляют дидактические игры, в ходе которых цели обучения достигаются при помощи и посредством решения игровых задач. Управляя процессом игры, преподаватель одновременно и руководит учебно-познавательной деятельностью, и связывает ее с положительным мотива ...