Опр.1. Пусть дана последовательность функций: , причем функции являются функциями одной переменной и определены в некоторой области . Такая последовательность называется функциональной и обозначается: .
Пусть для каждого эта последовательность имеет конечный предел. Величина этого предела зависит от значения . Поэтому функциональная последовательность своим пределом будет также иметь функцию, зависящую от , т.е. .
Опр.2. Функция называется предельной функцией последовательности .
Теперь нас будут интересовать не только существование предела при каждом отдельном значении , но и функциональные свойства предельной функции .
Опр.3. Рассмотрим ряд, элементами которого являются функции одной и той же переменной , заданной в области :
.
Такой ряд называется функциональным рядом.
Сходимость этого ряда определяется следующим образом: при каждом фиксированном значении функция принимает числовое значение. Поэтому при каждом из X функциональный ряд превращается в числовой ряд.
Пусть дан функциональный ряд и он сходится при каждом фиксированном из, тогда сумма такого ряда представляет собой некоторую функцию от переменной x: . Сумма для функционального ряда определяется также как и для числового: . Здесь - частичная сумма функционального ряда n-го порядка
.
Опр.4. Множество всех значений x, при которых заданный функциональный ряд сходится, называется областью сходимости функционального ряда.
Пример №1. Найти область сходимости ряда
.
Решение. Применим признак Д`Аламбера абсолютной сходимости функционального ряда. Имеем:
Следовательно, при данный ряд сходится абсолютно, а при расходится.
Рассмотрим теперь поведение исследуемого функционального ряда при и .
При этих значениях получаются соответствующие числовые ряды:
которые, сходятся по интегральному признаку сходимости числового положительного ряда и признаку сходимости знакочередующегося ряда соответственно.
Окончательно получаем, что на отрезке [-1,1] заданный функциональный ряд абсолютно сходится.
Образование, педагогика, воспитание:
Разработка письменного инструктирования
Письменное инструктирование является одним из методических приемов проведения основной части урока производственного обучения в мастерской. Этот прием позволяет наладить самостоятельную работу учащихся по выполнению учебного задания. Нам известно четыре основных вида документации письменного инстру ...
Понятие и сущность полоролевой социализации детей среднего дошкольного
возраста
Воспитание как процесс приобщения человека к историческому опыту в содержательной и целеполагающей основе всегда определяется ведущими потребностями общества. Изменение базовых социальных ориентиров неизбежно приводит к пересмотру и переоценке задач, направлений, форм организации воспитательной раб ...
Разработка элективного курса «Элементы комбинаторики и теории вероятностей»
В соответствии с письмом Министерства образования Российской Федерации от 23.09.2003 г. №03–93 ин/13–03 «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования школы» рекомендуется во всех образовательных учреждениях начать с 2003/2004 учебного ...