Опр.1. Пусть дана последовательность функций: , причем функции являются функциями одной переменной
и определены в некоторой области
. Такая последовательность называется функциональной и обозначается:
.
Пусть для каждого эта последовательность имеет конечный предел. Величина этого предела зависит от значения
. Поэтому функциональная последовательность своим пределом будет также иметь функцию, зависящую от
, т.е.
.
Опр.2. Функция называется предельной функцией последовательности
.
Теперь нас будут интересовать не только существование предела при каждом отдельном значении , но и функциональные свойства предельной функции
.
Опр.3. Рассмотрим ряд, элементами которого являются функции одной и той же переменной , заданной в области
:
.
Такой ряд называется функциональным рядом.
Сходимость этого ряда определяется следующим образом: при каждом фиксированном значении функция
принимает числовое значение. Поэтому при каждом
из X функциональный ряд
превращается в числовой ряд.
Пусть дан функциональный ряд и он сходится при каждом фиксированном
из
, тогда сумма такого ряда представляет собой некоторую функцию от переменной x:
. Сумма для функционального ряда определяется также как и для числового:
. Здесь
- частичная сумма функционального ряда n-го порядка
.
Опр.4. Множество всех значений x, при которых заданный функциональный ряд сходится, называется областью сходимости функционального ряда.
Пример №1. Найти область сходимости ряда
.
Решение. Применим признак Д`Аламбера абсолютной сходимости функционального ряда. Имеем:
Следовательно, при данный ряд сходится абсолютно, а при
расходится.
Рассмотрим теперь поведение исследуемого функционального ряда при и
.
При этих значениях получаются соответствующие числовые ряды:
которые, сходятся по интегральному признаку сходимости числового положительного ряда и признаку сходимости знакочередующегося ряда соответственно.
Окончательно получаем, что на отрезке [-1,1] заданный функциональный ряд абсолютно сходится.
Образование, педагогика, воспитание:
Игры и упражнения с предметами
В воспитании детей раннего возраста очень важным является обогащение и совершенствование чувственного опыта в процессе деятельности. Характерной для этой возрастной ступени деятельностью является деятельность предметная. Ее называют ведущей не только потому, что она преобладает, но и потому, что им ...
Критерий Коши равномерной сходимости функциональной последовательности
Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для 0 , , N и выполнялось неравенство: . Доказательство необходимости Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область оп ...
Проблема сохранения здоровья подрастающего поколения
Конец XX столетия ознаменован целым комплексом глобальных изменений в социальной, экономической и духовной сферах общества, утратой ранее значимых ценностей и возникновением новых, формированием новой философии жизни. Человеческое сообщество захлестывает ускоряющийся динамизм социальных процессов, ...