Назначение учебника математики
Учебник математики – книга, излагающая основы научных знаний по математике в соответствии с целями обучения, определёнными программой и требованиями дидактики.
Содержание и построение учебника определяется задачами преподавателя математики и спецификой предмета и потому его назначение в том, чтобы:
а) содействовать формированию и развитию диалектического и логического мышления;
б) давать систематическое, научно обоснованное, доступное для учащихся данного возраста изложение основных теоретических сведений по математике, т.е. давать систему знаний;
в) включать достаточное количество разнообразных задач и упражнений, расположенных в целесообразной с методической точки зрения последовательности, т.е. обеспечивать системой упражнений.
В силу своего назначения в системе средств обучения учебник является ядром, вокруг которого группируются все другие учебные средства.
Учебник предназначается:
1) ученику (содержание текста, подбор примеров, язык, уровень формализации и т.д. рассчитаны непосредственно на ученика соответствующего возраста);
2) учителю для организации деятельного процесса (материал не являющийся необходимым ученику, но позволяющий учителю понять методический замысел автора);
3) другим лицам (родителям, администрации школы и т.д.).
Итак, учебник – средство для усвоения основ наук, предназначенное для учеников и одновременно резюме изложения научных сведений учителям.
Структура учебника математики:
1) строится на основе определённых логических принципов с учётом возрастных особенностей учащихся, определённым для данного возраста уровнем строгости изложения, поставленных целей обучения.
2) обязательны описания и словесные объяснения, дающие готовые знания, излагаемый материал всё в большей мере строится в логической последовательности, в результате чего наступает переход от систематичности, обусловленной средой, к логической систематичности (геометрический материал в курсе математики младших классов).
3) при наличии одинакового содержания, вводимого поочерёдно на низших и высших уровнях обучения, используется концентрическая или циклическая систематичность (по этому принципу построено содержание тем: тождественные преобразования, уравнения, неравенства), которая позволяет связать воедино три ступени познания: а) уровень непосредственного наблюдения возможен в построении, обусловленном средой; б) уровень абстрактного мышления – в логическом построении; в) уровень проверки и использования знаний – в целевом построении.
4) мотивация излагаемого материала: при изучении материала наиболее трудной является проблема создания соответствующей мотивации учения, т.е. потребностей, интересов, стимулов, обеспечивающих активность познавательной деятельности учащихся. Устойчивым и длительным является лишь тот интерес, который возникает при создании проблемной ситуации (тема в учебнике должна начинаться с создания характерных проблемных ситуаций и представление средств для их разрешения).
Роль и место репродуктивных заданий в учебнике математики
Система заданий – необходимый компонент аппарата организации усвоения материала учебника, включающий репродуктивные и творческие задания, охватывающие все элементы содержания.
Репродуктивный элемент формирует такое качество знаний, как оперативность, т.е. способность применять знание в различных ситуациях и является базой для решения творческих задач.
Примером может служить система репродуктивных заданий в учебнике “Геометрия 7-11” Погорелова.
Образование, педагогика, воспитание:
Методические рекомендации по проведению лекционных занятий
Курс "Математический анализ" входит в блок дисциплин предметной подготовки и занимает важное место среди них в процессе подготовки будущих педагогов - математиков. Целью курса является научное обоснование тех, относящихся к нему понятий, первое представление о которых дается в школе. Курс ...
Особенности воспитания сенсорной культуры детей младшего дошкольного
возраста
К специальным задачам сенсорного развития можно отнести: развитие всех видов восприятия (зрительного, слухового, тактильно-двигательного, восприятие пространства и времени); формирование системы перцептивных действий; формирование зрительно-моторной координации, межсенсорных связей и перцептивных о ...
Основные требования к отбору задач для занятий элективного курса
Элективный курс по математике представляет собой одну тему, рассмотренную глубоко (например, элективный курс может называться «Комбинаторные задачи», а может состоять из нескольких тем, связанных друг с другом (например, «Элементы комбинаторики, статистики и теории вероятностей»). Основной курс мат ...