Иногда игру-путешествие отождествляют с прогулкой. Но прогулка чаще всего имеет оздоровительные цели. Познавательное содержание может быть и на прогулке, но оно является не основным, а сопутствующим.
Игры-поручения имеют те же структурные элементы, что и игры-путешествия, но по содержанию они проще и по продолжительности короче. В основе их лежат действия с предметами, игрушками, словесные поручения. Игровая задача и игровые действия в них основаны на предложении что-то сделать: «Помоги Буратино расставить знаки препинания», «Проверь домашнее задание у Незнайки».
Игры-предположения «Что было бы ?» или «Что бы я сделал .», «Кем бы хотел быть и почему?», «Кого бы выбрал в друзья?» и др. Иногда началом такой игры может послужить картинка.
Дидактическое содержание игры заключается в том, что перед детьми ставится задача и создается ситуация, требующая осмысления последующего действия. Игровая задача заложена в самом названии «Что было бы ?» или «Что бы я сделал .». Игровые действия определяются задачей и требуют от детей целесообразного предполагаемого действия в соответствии с поставленными условиями или созданными обстоятельствами. Дети высказывают предположения, констатирующие или обобщенно-доказательные. Эти игры требуют умения соотнести знания с обстоятельствами, установления причинных связей. В них содержится и соревновательный элемент: «Кто быстрее сообразит?».
Игры-загадки. Возникновение загадок уходит в далекое прошлое. Загадки создавались самим народом, входили в обряды, ритуалы, включались в праздники. Они использовались для проверки знаний, находчивости. В этом и заключается очевидная педагогическая направленность и популярность загадок как умного развлечения. В настоящее время загадки, загадывание и отгадывание, рассматриваются как вид обучающей игры.
Основным признаком загадки является замысловатое описание, которое нужно расшифровать (отгадать и доказать). Описание это лаконично и нередко оформляется в виде вопроса или заканчивается им. Главной особенностью загадок является логическая задача. Разгадывание загадок развивает способность к анализу, обобщению, формирует умение рассуждать, делать выводы, умозаключения.
Игры-беседы (диалоги). В основе игры-беседы лежит общение педагога с детьми, детей с педагогом и детей друг с другом. Это общение имеет особый характер игрового обучения и игровой деятельности детей. В игре-беседе учитель часто идет не от себя, а от близкого детям персонажа и тем самым не только сохраняет игровое общение, но и усиливает радость его, желание повторить игру. Однако игра-беседа таит в себе опасность усиления приемов прямого обучения.
Воспитательно-обучающее значение заключено в содержании сюжета –темы игры, в возбуждении интереса к тем или иным аспектам объекта изучения, отраженного в игре. Познавательное содержание игры не лежит «на поверхности»: его нужно найти, добыть – сделать открытие и в результате что-то узнать.
Ценность игры-беседы заключается в том, что она предъявляет требования к активизации эмоционально-мыслительных процессов: единства слова, действия, мысли и воображения детей. Игра-беседа воспитывает умение слушать и слышать вопросы учителя, вопросы и ответы детей, умение сосредоточивать внимание на содержании разговора, дополнять сказанное, высказывать суждение. Все это характеризует активный поиск решения поставленной игрой задачи. Немалое значение имеет умение участвовать в беседе, что характеризует уровень воспитанности.
Образование, педагогика, воспитание:
Психофизиологические особенности детей старшего дошкольного возраста с
задержкой психического развития
Рост требований к личности ребенка, среди которых ранние сроки начала обучения, усложнение образовательных программ определяют необходимость своевременного выявления пограничных состояний интеллектуальной недостаточности современных дошкольников. Задержка психического развития у детей чаще всего об ...
Почленное
дифференцирование функциональных рядов
Теорема 7. Пусть последовательность функций , непрерывно дифференцируемых на , и последовательность их производных равномерно сходятся на , тогда предел последовательности непрерывно дифференцируемых функций , т.е. , непрерывно дифференцируем на указанном отрезке и верно равенство: или . Доказатель ...
Использование ТСО на лекционных занятиях
Среди разнообразных методов и средств совершенствования процесса обучения в высшей школе, а также интенсификации и повышения эффективности учебной деятельности важное место отводится использованию технических средств обучения (ТСО). ТСО - это совокупность технических устройств и дидактических матер ...